SciPost Submission Page
Acceleration-induced transport of quantum vortices in joined atomtronic circuits
by A. Chaika, A. O. Oliinyk, I. V. Yatsuta, N. P. Proukakis, M. Edwards, A. I. Yakimenko, T. Bland
Submission summary
Authors (as registered SciPost users): | Thomas Bland · Andrii Chaika · Mark Edwards · Alexander Yakimenko · Ihor Yatsuta |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2410.23818v1 (pdf) |
Date submitted: | 2024-11-04 15:39 |
Submitted by: | Bland, Thomas |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
Persistent currents--inviscid quantized flow around an atomic circuit--are a crucial building block of atomtronic devices. We investigate how acceleration influences the transfer of persistent currents between two density-connected, ring-shaped atomic Bose-Einstein condensates, joined by a tunable weak link that controls system topology. We find that the acceleration of this system modifies both the density and phase dynamics between the rings, leading to a bias in the periodic vortex oscillations studied in T. Bland et al., Phys. Rev. Research 4, 043171 (2022). Accounting for dissipation suppressing such vortex oscillations, the acceleration facilitates a unilateral vortex transfer to the leading ring. We analyze how this transfer depends on the weak-link amplitude, the initial persistent current configuration, and the acceleration strength and direction. Characterization of the sensitivity to these parameters paves the way for a new platform for acceleration measurements.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block