
Report on “Integrable fishnet circuits and Brownian
solitons”

This article presents a very interesting construction, based on the notion of (en-
twining) Yang-Baxter maps, of integrable maps dubbed fishnet circuits that allow for
randomised time steps, leading to stochastic integrable dynamics. The general frame-
work and results are introduced in Section 2 and 3. Many of the tools and statements
there will be familiar to the reader versed in (discrete) integrable systems but the au-
thors develop these ideas in the very interesting new direction of stochastic integrable
dynamics. Two paradigmatic examples are used in Section 4 to illustrate some aspects
of the framework. The Toda example is very useful as its simplicity allows the reader
to see how the method works in detail. The other model is technically much more chal-
lenging but the authors show that a lot can still be done in the way of deriving the
analytical results needed for the implementation of the method. This is an important
aspect as the Toda example alone would have weakened the impact of the work. Section
5 is the crucial feature of this work where the implementation of stochastic dynamics
is introduced and some (numerical) results are provided, with a very interesting aspect
related to Brownian solitons. The approach, ideas and results are exciting and certainly
deserve publication in SciPost, after the authors take into account the comments below.

The overarching comment is that this article can bring closer together various com-
munities (e.g. discrete integrable systems and integrable statistical physics). In order to
do so, I think a better exposition of what is known in discrete integrable systems would
help that community appreciate and digest the important results of this work. This is
not a criticism as the paper is very well written overall. I will try to suggest areas for
improvement with the following comments/questions.

1. p2: there’s a typo in the third paragraph of the introduction “an daunting” → “a
daunting”.

2. p2: fifth paragraph. It is true that conventional discretisations break integrability
in general. However, this is precisely one of the origins of discrete (semi and fully)
integrable systems whereby one designed discretisation schemes that would auto-
matically preserve integrability. This is a well-established machinery now. To my
knowledge the earliest example of this is the Ablowitz-Ladik model that was built
as a space discretisation of the nonlinear Schrödinger equation so as to preserve in-
tegrability. Standard methods involve for instance using Darboux/Bäcklund trans-
formations of continuous equations to construct the integrable discretisations (see
e.g. [1]) or the so-called direct linearisation method (see e.g. [2]). Of course the
literature on this is huge so perhaps the book ’Discrete Systems and Integrability’
by J. Hietarinta, N. Joshi and F.W. Nijhoff is a good source to mention for this.

3. p3: the refactorisation (1.1) is the basis of the entire construction and the beginning
of various points that need clarifying throughout the paper. Basically, it has to
do with whether one needs to consider (1.1) with shifted spectral parameters or
not. Traditionally, one would consider (1.1) with the same λ everywhere, although
the Lax matrices would be allowed to depend on extra (lattice) parameters. The

1



use of λ± is a nice idea which induces the τ dependence on the map as desired.
However, there are points in the rest of the text where it is not clear whether the
shifted, non shifted or other version of (1.1) is required to make the statements.
One such instance is when the authors deal with inhomogeneities. I will try to
mention where confusion might arise in chronological order below.

Finally, in general the authors allows La to be different from L so I think they fall
under the general idea of entwining Yang-Baxter maps as discussed e.g. in [3].

4. p4 just before (1.5) the integer n appears on the monodromy and transfer function
and at this stage it is not clear what it means. Later, it appears that it is simply
the n-fold product of the monodromy matrix but it would help to say it already
here.

5. p7 it would be helpful if the authors clarified what they mean by “mutual compati-
bility”. In addition to requiring (2.1) for L and also for La with the same r-matrix,
do they also require {L,La} = 0?

6. p8: the authors introduce inhomogeneity parameters. As they explain with (2.8),
to resolve (2.7) they need the successive maps ψτ−ξℓ , not ψτ . Thus, it is slightly
misleading for the reader to say that one uses repeated applications of (2.2) since,
if I understand correctly, the authors need the refactorisations

La
λ−τ−ξℓ

(yℓ)Lλ+τ−ξℓ(x
′
ℓ) = Lλ+τ−ξℓ(xℓ)La

λ−τ−ξℓ
(yℓ−1) , ℓ = 1, . . . , L

In turn, this means that the Ψτ in fact also depends on all the inhomogeneities,
although they are not shown explicitly. My main question is what is the point of
dealing with inhomegeneities since, as far as I can see, they are not used in the
examples and they do not seem to play a role in the general discussion either? In
the examples, the authors specify several times that Ξ = 0, which would not be
needed if the inhomogeneities were not introduced in the first place.

7. p9: a small typo in the sentence after (2.17) which contains two ’the’.

8. p9: it is true that the ultralocality property of (2.1) implies (2.21) for n = m = 1
but for larger n,m, (2.21) does not hold. However, (2.22) is still true thanks to the
cyclicity property of the trace.

9. p9: just before (2.23), the expansion is not necessarily in 1/λ as the Toda example
shows.

10. p9: the comment after (2.25) on the τ independence of the conserved quantities is
puzzling. (2.7) involves the monodromy matrix with λ+ so that it should lead to
(2.19) with λ+ not λ i.e. I expect T (n)

λ+ to be preserved by the time evolution under
the chiral propagators. Thus I do not understand how one could also immediately
see that T (n)

λ is also preserved by the chiral propagators. Then if one expands T (n)

λ+

in powers (positive or negative) or λ, the charges will in general be τ dependent. I
checked this for the simplest charge, say Q(1)

1 (τ) in the Toda example. In that case
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however, the charge had a very simple dependence on τ Q(1)
1 (τ) = τ +Q

(1)
1 where

Q
(1)
1 happened indeed to be conserved under the evolution map. This encouraged

me to believe that (2.25) does hold with τ independent charges extracted from
T (n)
λ instead of T (n)

λ+ but I could not see how to obtain a general statement from
(2.7). Hopefully my comment makes sense and I hope the authors can clarify this
point.

11. p10: As I already mentioned, strictly speaking what is exposed here falls within
the more general notion of entwining Yang-Baxter maps since the authors allows
for two distinct Lax matrices in general. They have two distinct maps in (2.27)
as a special case of the more general situation of 3 maps presented for instance in
[3]. It also a bit misleading to say at the beginning that relation (2.2) is enough to
reverse the order of the factors since in fact (2.31) is also needed and hence has to
be assumed. I would suggest to introduce (2.31) before presenting (2.26) and then
(2.27). Finally, there is one more condition that should be mentioned to ensure
that (2.27) is indeed a consequence of (2.26), see Proposition 3.1 in [3].

12. Could the authors clarify what they mean by the comment in footnote 5 about the
intertwiner not mixing the fixed points? First, the intertwiner outputs y∗′j from
the input y∗j so it seems that is has an action on the fixed points and it is not clear
why y∗′j should also be fixed points for the map X → X ′ if y∗j are, and vice versa.
Second, the comment in the footnote seems to be a key aspect in deducing (2.34)
from (2.33). Very superficially, this seems analogous to the argument based on
the quantum Yang-Baxter equation to obtain the commutativity of the quantum
transfer matrix trT from the relation R12T1T2 = T2T1R12, the intertwiner playing
the role of R12. However, here one has to project on the “spaces” (copies of YL) 1
and 2 according to (2.11) and it is not clear how the intertwiner goes away when
this is done and how the comment in the footnote plays a role.

13. p14: in the last line, I don’t think the convention of including the identity matrix
as the “Pauli matrix” σ0 is widespread (strictly speaking the identity matrix is not
even part of the Lie algebra of 2 × 2 traceless matrices) and a superficial reading
could mislead the reader when trying to compute the permutation Π.

14. p15: it would help the reader to explain how the map (4.8)-(4.11) is used to deduce
(4.17) by relating it to Figure 2 more explicitly (it took me some time to figure it
out in order to check (4.17)). By this I mean that, the dashes in (4.8)-(4.11) are
not the same as the dashes (and absence thereof) in Figure 2. I would suggest to
include the equations as they are used to derive (4.17). If I’m not mistaken, this

3



should be

x′ℓ = yℓ−1,

p′ℓ =
xℓ
yℓ−1

+ yℓ−1kℓ−1 − τ,

yℓ = xℓ

(
pℓ + τ − xℓ

yℓ−1

)
,

kℓ =
1

xℓ
.

With this, I think there is a typo in (4.17) and Fℓ should be(
pℓ + τ − xℓ

xℓ−1

1 0

)
.

Then, a different notation should be used in (4.20) since here, it is indeed the
matrix given in (4.17) that appears but it is then no longer the same Fℓ as in the
corrected (4.17).

15. p16: the derivation of the continuous limit is interesting but I could not see what
role it plays in the structure of the paper. Could the authors explain why they
thought this should be included? Perhaps it is related to the continuous-time limit
considerations in Section 5 but, if so, it would be helpful to explain how?

16. p18: a very minor point. The same notation Hk for the homology groups and for
the conserved charges around (3.11) is used.

17. p20: a similar remark to above about helping the reader relate the setup of Figure
2 with the notations in (4.43)-(4.44) in order to derive (4.68)-(4.69) (then giving
aℓ would also help). Also, what does the subscript a mean on ζaℓ ? Finally, ζℓ is
used in (4.68), while X is used in (4.70). I completely understand that the authors
switch between the generic notations x, X and the particular spin/stereographic
notations in the example but it does makes things a bit harder to follow on a first
read.

18. p22-23: to derive (4.80), again I would suggest to help the reader relate the notation
yℓ etc. with the spin notation in (4.46). Also, it would be useful to recall that xℓ
for the set of variables yℓ are the same xℓ used for the set of variables y′ℓ so that
∆

′2
ℓ is the same as ∆2

ℓ with yℓ → y′ℓ. It took me a while to reproduce (4.80). I
think in (4.82), L−1 should be on both side or not at all. The argument to prove
the existence of a fixed is very nice and based on (4.83)-(4.84). However, it would
be very helpful to give more detail on how to derive (4.84). I suspect dρS2 is a
measure on the unit sphere. If so, how does it arise and why does the discrete
sℓ still appear under the integral? Presumably, in the continuous limit, there is a
transition to a continuous interpolating function s and a Jacobian producing the
measure?
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19. p23: small typo in the last paragraph: “Despite that, the two...”

I have a few additional questions/comments that are more for my personal education
than to suggest changes in the text. However, the authors might feel that it would be
helpful to also say a few words about these in the text as I suspect I would not be the
only reader interested in those aspects.

There is a well-known method called periodic reductions (see e.g. the Discrete Sys-
tems and Integrability book mentioned above) that has been applied to many lattice
equations to produce integrable maps. The present construction is very reminiscent of
this since the authors set up periodic boundary conditions on the circuit. I thought
at first that this was exactly the same thing but I could not pinpoint the exact corre-
spondence. In addition, in the periodic reductions approach one does not usually worry
about the existence of a fixed point in order to be able to impose periodicity. Periodicity
is imposed and then the maps are deduced. I wonder if the authors could comment on
this.

The numerical identification of what the authors call Brownian solitons is very in-
triguing and exciting. Unfortunately, they are only briefly mentioned at the end. Can
the authors say more? For instance, are there references on this topic? What would
their analytical expressions look like (if known in some model)? I am not a specialist of
stochastic processes but I was under the impression that a noise term for instance in a
stochastic differential equation would break the conservation of energy. How could then
one hope to have an integrable dynamics if even the energy is no longer conserved? I
might be completely missing the point but could the authors comment?
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