SciPost Submission Page

Information geometry in quantum field theory: lessons from simple examples

by Johanna Erdmenger, Kevin T. Grosvenor, Ro Jefferson

Submission summary

As Contributors: Ro Jefferson
Preprint link: scipost_202002_00001v1
Date submitted: 2020-02-03
Submitted by: Jefferson, Ro
Submitted to: SciPost Physics
Discipline: Physics
Subject area: High-Energy Physics - Theory
Approach: Theoretical

Abstract

Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fisher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs. states, using the example of coherent free fermion states. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.

Current status:
Editor-in-charge assigned


Submission & Refereeing History

Submission scipost_202002_00001v1 on 3 February 2020

Login to report or comment