
1 A counterexample for the gauge field case ?

Let us write the wavefunctional for the electromagnetic case. Before the gauge coupling is
introduced, we can take the matter wavefunctional as

Φ0[φ1(x), φ2(x)] (1)

where φ1, φ2 are real fields.
The Lagrangian is

L = −1

4
FabF

ab − 1

2
∂aφ1∂

aφ1 −
1

2
∂aφ2∂

aφ2 + qAaj
a (2)

where
ja = φ1∂aφ2 − φ2∂aφ1 (3)

We will take a gauge where
~∇ · ~A = 0 (4)

The t component of the gauge field equation gives the constraint

F0i,i = j0 (5)

where
F0i = Ai,0 −A0,i, F0i,i = Ai,0i −A0,ii = (~∇ · ~A). +4Φ (6)

In the gauge (4) this becomes

4Φ = qj0 = q(φ1∂0φ2 − φ2∂0φ1) (7)

(Note that this is not the constraint equation in a more general gauge. This will be
relevant because sometimes apparently nonlocal effects can arise because of a gauge choice,
but there is really no nonlocality because the observables must also be defined carefully in
each gauge.)

There are many ways to pass to the quantum theory. One possibility is to impose (7)
as an operator relation

4Φ(x)Ψ[φ1(x), φ2(x),Φ(x)] = q

(
φ1(y)(−i ∂

∂φ2(y)
)− φ2(y)(−i ∂

∂φ1(y)
)

)
Ψ[φ1(x), φ2(x),Φ(x)]

(8)
where we have written

Φ = −A0 (9)

Our goal is to see if we can get a solution to the quantum wavefunctional that (i)
satisfies the constraints (ii) changes can be made to this wavefunctional at r < R while
making no change outside r = R; we will argue this means that the state inside r = R
cannot be detected from r > R by any means.
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The wavefunctional Ψ depends on φ1(x), φ2(x),Φ(x). To construct a wavefunctional
satisfying the constraints, We proceed in the following steps:

(i) First choose any one function Φ(x) = Φ1(x). Compute

U(x) ≡ 4Φ1(x) (10)

which is just a function over 3-dimensional space.

(ii) Now look at any point x = x1. At this point we have a number

U1 ≡ 4Φ1(x)
∣∣∣
x=x1

(11)

At this point in function space Φ = Φ1(x), focus on the spatial point x = x1. Here the
functional Ψ has to satisfy the constraint(

φ1(y)(−i ∂

∂φ2(y)
)− φ2(y)(−i ∂

∂φ1(y)
)

)
Ψ[φ1(x1), φ2(x1)] =

U1

q
Ψ[φ1(x1), φ2(x1)] (12)

Now this is an equation for a function Ψ of just two real number arguments φ1(x1), φ2(x2).
There are many solutions of this equation. Let us call them

[φi(x1)]1, [φi(x1)]2, [φi(x1)]3 . . . (13)

for later use. (Here i = 1, 2 ranges over the two flavors of scalar fields that we have taken.)
Note that this equation does not involve the functional Ψ at any other space point x 6= x1
right now. For any other point x2 we will get similar solutions

[φi(x2)]1, [φi(x2)]2, [φi(x2)]3 . . . (14)

and so on, where in (12) we replace U1 by its value U2 at the point x2. Thus we can choose
a solution to this equation at each point x separately. Suppose we choose the first solution
[φi(x)]1 for each x. This gives Ψ that satisfies the constraint everywhere for the point in
function space Φ = Φ1(x).

(iii) Now choose some other point Φ = Φ2(x) in the space of functions Φ(x). Proceed as
above, getting a solution that satisfies the constraint at this point Φ2(x) in function space.
Doing this for all functions Φ(x) gives us a complete functional Ψ[φ1(x), φ2(x),Φ0(x)] that
satisfies the constraint.

(iv) Now we observe that since for each Φ(x) the construction above proceeded sepa-
rately for each point x, we can choose two different functionals Ψ[φ1(x), φ2(x),Φ(x)] that
are the same for all points outside a sphere r = R and differ inside. Then we will not be
able to do any observations outside r = R to find what is the state inside.
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(v) Note that the above state was a factored product of states at each x. This is
not a generic low energy state. But we can take a state that has some entanglement
between nearby points, by taking superpositions of the above constructed Ψ; thus we can
for example add the Ψ that we get from choosing [φi(x)]1 at each x to the wavefunctional
that we get from choosing [φi(x)]2 at each x. This is a more general class of states, but
again, we can arrange that the wavefunctional outside r = R remain unchanged while the
wavefunctional inside r = R is altered.

2 The gravity case

At the formal level at which one is working, the gravity set up looks similar to this elec-
tromagnetic set up. The gauge potential A0(x) is replaced by h00(x), and the current is
replaced by the stress tensor j0 → T00 where

T00 = (∇φ1)2 + (∇φ2)2 + Π2
1 + Π2

2 (15)

At the quantum level we can write

T̂00 = (∇φ̂1)2 + (∇φ̂2)2 + Π̂2
1 + Π̂2

2 (16)

which becomes, in the representation Ψ[φ1(x), φ2(x), h00(x)]

T̂00 = (∇φ1)2 + (∇φ2)2 −
∂2

∂φ21
− ∂2

∂φ22
(17)

The analogue of (??) becomes

4h00(x) =

(
(∇φ1(y))2 + (∇φ2(y))2 − ∂2

∂φ1(y)2
− ∂2

∂φ2(y)2

)
G[φ1, φ2] (18)

It is not clear to me that a construction similar to the electromagnetic case will not work,
but if checking this will be relevant, then I will be happy to try.
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