Referee report on the paper
 "Algebraic Bethe Ansatz for spinor R-matrices" by Vidas Regelskis

This paper is devoted to the investigation of $U_{q^{2}}\left(\mathfrak{s o}_{2 n+1}\right)$ - and $U_{q}\left(\mathfrak{s o}_{2 n+2}\right)$ symmetric closed spin chains and computing of the eigenvectors and eigenvalues of the corresponding transfer matrices. Authors develops the algebraic Bethe ansatz for these models and uses a supermatrix realization of q-deformed spinor-spinor and spinor-vector R-matrices.

The paper generalizing nested Bethe ansatz technique for the spin chain models is rather technical and will require a lot of work from the reader to understand author's notations and approach. Nevertheless it presents new results on the quantum integrable models and I can recommend the paper "Algebraic Bethe Ansatz for spinor R-matrices" by Vidas Regelskis for publication in SciPost Physics Journal.

The only remark which I would like to mention is a possible contradiction between commutation relations of fundamental L-operators of the quantum loop algebra and their coproduct given in Definition 2.1 on pages 5 and 6 . If one believes that these L-operators appear after specialization of the first tensor component of the corresponding universal \mathcal{R}-matrix onto composition of evaluation map and fundamental finite-dimensional representation $\pi(u)$

$$
L(u)=(\pi(u) \otimes \mathrm{id}) \mathcal{R}
$$

then the commutation relations (2.17) in the paper follows from the YB equation for \mathcal{R}

$$
\begin{gathered}
(\pi(u) \otimes \pi(v) \otimes \mathrm{id}) \mathcal{R}_{12} \cdot \mathcal{R}_{13} \cdot \mathcal{R}_{23}=(\pi(u) \otimes \pi(v) \otimes \mathrm{id}) \mathcal{R}_{23} \cdot \mathcal{R}_{13} \cdot \mathcal{R}_{12} \\
R_{12}(u, v) L_{1}(u) \cdot L_{2}(v)=L_{2}(v) \cdot L_{1}(u) R_{12}(u, v)
\end{gathered}
$$

and coproduct of this L-operators follows from the triangular property of \mathcal{R}

$$
(\mathrm{id} \otimes \Delta) \mathcal{R}=\mathcal{R}_{13} \cdot \mathcal{R}_{12}
$$

namely

$$
\Delta L_{i j}(u)=\sum_{k} L_{k j}(u) \otimes L_{i k}(u) .
$$

Author has to be careful if coproduct formula (2.18) is used further in the practical calculations.

