Second report on manuscript by Esteve-Paredes and Placios

Overall I judge that the authors have done a conscientious job in replying to my comments and making corresponding changes in the manuscript.

I still have reservations about the way my comments $1(\mathrm{~b})$ and $1(\mathrm{~d})$ were answered. (Incidentally, the authors misquoted $1(\mathrm{~b})$ with a cut-and-paste typo; the sentence should have read "First, isn't it true that $\langle n \boldsymbol{k}| \boldsymbol{v}\left|n^{\prime} \boldsymbol{k}\right\rangle_{v}$ in Eq. (1) contains a $\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$?".) If we accept from other arguments that $\langle n \boldsymbol{k}| \boldsymbol{v}\left|n^{\prime} \boldsymbol{k}^{\prime}\right\rangle_{v}$ is diagonal in \boldsymbol{k} (e.g., using that \boldsymbol{v} is a periodic operator), and in view of the $\omega_{n \boldsymbol{k}, n^{\prime} \boldsymbol{k}}$ prefactor, we only have to evaluate $\langle n \boldsymbol{k}| \boldsymbol{r}\left|n^{\prime} \boldsymbol{k}\right\rangle_{v}$ for $\boldsymbol{k}=\boldsymbol{k}^{\prime}$ and $n \neq n^{\prime}$. Here I adopt the notation that $\tilde{\psi}$ are the wave functions normalized to volume $L=N a$ while $\psi=\sqrt{N} \tilde{\psi}$ are normalized to a primitive cell. Then in 1D

$$
\begin{aligned}
\langle n \boldsymbol{k}| \boldsymbol{r}\left|n^{\prime} \boldsymbol{k}\right\rangle_{v} & =\int_{0}^{N a} d x x \tilde{\psi}_{n \boldsymbol{k}}^{*}(x) \tilde{\psi}_{n^{\prime} \boldsymbol{k}}(x) \\
& =\frac{1}{N} \int_{0}^{N a} d x x \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x) \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \int_{j a}^{(j+1) a} d x x \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x) \\
& =\frac{1}{N} \sum_{j=0}^{N-1} \int_{0}^{a} d x(x+j a) \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x)
\end{aligned}
$$

where I have used that $\psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x)$ is periodic under $x \rightarrow x+a$. Then

$$
\begin{aligned}
\langle n \boldsymbol{k}| \boldsymbol{r}\left|n^{\prime} \boldsymbol{k}\right\rangle_{v}= & \left(\frac{1}{N} \sum_{j=0}^{N-1}\right)\left(\int_{0}^{a} d x x \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x)\right) \\
& +\left(\frac{a}{N} \sum_{j=0}^{N-1} j\right)\left(\int_{0}^{a} d x \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x)\right)
\end{aligned}
$$

The second integral vanishes by orthogonality of the wave functions and the first factor in the first term is unity, so

$$
\langle n \boldsymbol{k}| \boldsymbol{r}\left|n^{\prime} \boldsymbol{k}\right\rangle_{v}=\int_{0}^{a} d x x \psi_{n \boldsymbol{k}}^{*}(x) \psi_{n^{\prime} \boldsymbol{k}}(x)
$$

I believe another argument along these lines allows to show that $C_{n \boldsymbol{k}, n^{\prime} \boldsymbol{k}}$ can be similarly written in terms of the boundaries of the primitive cell.

This kind of development is what I had in mind when I wrote "I suspect Eqs. (1112) can be recast in terms of integrals over a the interior and the boundary of a single primitive cell, with wave functions normalized to the unit cell." I leave it as an option for the authors to discuss this somehow in their revised manuscript.

