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Summary of contributions

This paper focuses on the random features model (RFM), a single-hidden layer neural network where
only the second layer weights are learned. Recent studies of this model are numerous, as it exhibits
some learning phenomena observed in more complex neural networks, while being amenable to the-
oretical analysis. Denoting D the dimension of the data, N the size of the hidden layer, and P the
number of data points, the paper aims at describing the phenomenology of learning in RFMs in a
wide range of polynomial scaling for (D, N, P ). Assuming Gaussian i.i.d. input data and a random
polynomial teacher for the input-output data, and a RFM student, the authors derive, under a series
of approximations, a set of equations for the order parameters of this problem. This allows to com-
pute the generalization error achieved by the student, in a wide range of polynomial scaling regimes
N ∼ DL, P ∼ DK . These results are strengthened by numerical simulations illustrating the predictive
power of the theory.
On a technical level, the analysis relies on several approximation steps which can be justified in these
scaling regimes. The authors first map the RFM to an equivalent noisy polynomial model with a
degree varying as a function of the hidden layer size N (Section 4). This allows to then make use of
the replica method of statistical physics to derive the aforementioned set of equations for the order
parameters, while keeping track of all terms that might be relevant in the polynomial scaling regimes
N ∼ DL, P ∼ DK (Section 5). This latter derivation is however not straightforward, as the authors
rely in particular on another important approximation regarding a class of large random matrices, for
which they provide an analytical justification (Section 5 and 6).

Main comments

I read through the main text in some detail (following the computations and arguments, but not always
checking every step), but did not check the content of the appendices in detail. Overall, I found the
paper well-written and pleasant to read: the authors took good care of explaining well notations (cf.
Table 1), and laying out the computations. Moreover, while I am not an expert on random feature
models, the discussion of the existing literature is thorough, covering in particular important references
beyond physics, in mathematics and theoretical computer science. It is well emphasized that the main
contribution of the paper is to extend the framework of the replica method of statistical mechanics
to study the generalization error in random feature models in the generic polynomial scaling regime
P ∼ DK , N ∼ DL, beyond the previously-known proportional regime P ∼ N ∼ D. While the
theory involves several approximations, the numerical experiments are convincing with regard to the
predictive power of the equations derived by the authors, which seem to capture the behavior of the
learning performance in a variety of different scaling regimes.
My global opinion of the paper is therefore positive: the authors manage to derive an effective ap-
proximate theory for learning in RFMs which yields good results in much more general regimes than
previously known, and illustrate it with numerical experiments. I have no doubts that such conclusions
will be of interest to the community. However, I also think that several points (especially technical
but important assumptions and approximations used in the derivation) need to be better discussed,
see below for some examples. For these reasons, I would tend to recommend the paper for acceptance
in SciPost if the concerns I detail below are addressed in a revision.

1. I was slightly confused by the role of the readout activation ϕ. Indeed, the loss function (y − λ)2

of eq. (10) fits the data y to the pre-activation λ, while the generalization error measures the
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error as [y − ϕ(λ)]2, so the population loss (that the student aims at minimizing through its
empirical version) is not related to the generalization error. In a classification task, is there a
motivation for considering this loss?

2. Around line 200, it would be useful for the convenience of the reader to detail a bit more (possibly
in appendix) the CLT-type arguments behind the Gaussian approximation for p(ν, λ), besides
the references given in line 209.

3. In Section 4, I was not able to directly understand why the effective truncation of eq. (24)-
(25) suggests that one can represent the RFM as an effective noisy polynomial student. Is this
because if one were to consider such a polynomial student, the kernel of eq. (20) would then
have the form given in (24)-(25)? As this is at the heart of the results of this section (and of the
paper, since this is directly used in the replica calculation later), I believe the authors should
add clarifications to this argument.

4. The conclusion of Section 4 is an extension of the Gaussian equivalence principle of [GLR+22]
to the case N ∼ DL for some L > 0. However the authors also mention that they take in this
section the limit P → ∞ “for the purpose of arguing” and later on use its results for more general
values of P (see eq. (34), where it is used in the replica computation). Could the authors discuss
more why this principle remains valid in the replica computation even if the limit P → ∞ is not
taken before N, D → ∞?

5. In (43) the authors use the replica symmetric ansatz. Is this justified here simply by the convexity
of the problem?

6. The assumption that the row spaces of C⊙l and C⊙k (for l ̸= k) are almost orthogonal is crucially
used in the derivation, however I don’t believe it is justified in detail in the text. Is it related to
the later approximation of C⊙l by removing terms with equal indices (eq. (47)), and then taking
them to be Wishart matrices?

7. In the saddle point equations of Section 5.2, the authors keep track of many quantities that
depend on (D, N, P ) without taking them to their asymptotic limit (said asymptotic limits
being studied in Appendix H). This allows to tackle different scaling regimes with a single set
of equations, and to obtain a much better agreement with experiments than what is given by
the asymptotic limits. Could this be surprisingly good agreement be analytically justified by
analyzing the magnitude of the finite-size corrections to eq. (50)?

8. Section 6 seems a bit repetitive with respect to the discussion around eq. (47). Since the authors
mainly focus in Section 6 on the Wishart approximation for C⊙l, it might be clearer to re-organize
this discussion around where this approximation is used.

9. In section 6, the authors mention two “cornerstones” of their analysis. However, it seems to
me that other important assumptions are used in the derivation, such as the column space
orthogonality assumption, or the extension of the Gaussian equivalence principle. Is there a
reason why the authors chose to focus on these two assumptions here?

10. In the conclusion, the authors mention considering trained neural networks as an open direction.
Perhaps some other open directions are more easily reachable: do the authors believe that these
methods could be extended to more correlated models of data, or non-convex losses for instance?

Minor comments and questions

I list here some minor comments and questions.

1. The ELU activation is mentioned in Figure 1 before being defined.
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2. To clarify the setting, it might help to mention in the introduction (where the main conclusions
are mentioned) that this work considers a student which learns by minimizing a square loss,
which differentiates this work e.g. from Bayesian students, or other choices of loss functions.

3. In Section 5, the authors compute the asymptotics of the log-partition function as a way to
obtain the asymptotic values of the different order parameters defined in eq. (14), from where
they finally get the generalization error, since they approximate p(ν, λ) by a Gaussian whose
moments are given by said order parameters. I was thus a bit confused by the presentation
of eqs. (30) and (31) which makes it seem that the authors directly compute p(ν, λ) (even
introducing its replicated version), while I don’t believe this is used anywhere after that.

4. In line 295, the authors say that the Fourier conjugate of ta goes to 0 in the large-N limit,
giving reference to Gardner’s seminal work [Gar88]. It would be useful to add a short paragraph
(possibly in appendix) to explain why this is the case.

Some typos –

1. Line 41: “a the lazy-training”

2. Lines 172-173 do not read well.

3. w⋆
T instead of w⋆ in eq. (9), to match future notations (here and in several places).

4. Line 181: the sentence starts right after the equation?

5. Line 187: “the computation partition function”

6. Line 205: “this quantities”

7. Line 211: “the Gardner’s”

8. Line 226: “th”

9. Line 293 and 326: “indexes”

10. Line 326: “make make”

11. Line 349: A sentence is not finished.
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