SciPost Phys. 7, 055 (2019) ·
published 23 October 2019
|
· pdf
In this paper, we apply experimental number theory to two integrable quantum models in one dimension, the Lieb-Liniger Bose gas and the Yang-Gaudin Fermi gas with contact interactions. We identify patterns in weak- and strong-coupling series expansions of the ground-state energy, local correlation functions and pressure. Based on the most accurate data available in the literature, we make a few conjectures about their mathematical structure and extrapolate to higher orders.
SciPost Phys. 3, 003 (2017) ·
published 7 July 2017
|
· pdf
We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in \cite{Ristivojevic} and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tan's contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions.
Mr Lang: "We answer the referee's querie..."
in Submissions | report on Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state observables in the Lieb-Liniger and Yang-Gaudin models