Entanglement in the quantum Hall fluid of dipoles

Jackson R. Fliss

SciPost Phys. 11, 052 (2021) · published 9 September 2021


We revisit a model for gapped fractonic order in (2+1) dimensions (a symmetric-traceless tensor gauge theory with conservation of dipole and trace-quadrupole moments described in \cite{Prem:2017kxc}) and compute its ground-state entanglement entropy on $\mathbb R^2$. Along the way, we quantize the theory on open subsets of $\mathbb R^2$ which gives rise to gapless edge excitations that are Lifshitz-type scalar theories. We additionally explore varieties of gauge-invariant extended operators and rephrase the fractonic physics in terms of the local deformability of these operators. We explore similarities of this model to the effective field theories describing quantum Hall fluids: in particular, quantization of dipole moments through a novel compact symmetry leads us to interpret the vacuum of this theory as a dipole condensate atop of which dipoles with fractionalized moments appear as quasi-particle excitations with Abelian anyonic statistics. This interpretation is reflected in the subleading ``topological entanglement" correction to the entanglement entropy. We extend this result to a series of models with conserved multipole moments.

Author / Affiliation: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication