SciPost logo

Dilaton in scalar QFT: a no-go theorem in 4-epsilon and 3-epsilon dimensions

Daniel Nogradi, Balint Ozsvath

SciPost Phys. 12, 169 (2022) · published 20 May 2022

Abstract

Spontaneous scale invariance breaking and the associated Goldstone boson, the dilaton, is investigated in renormalizable, unitary, interacting non-supersymmetric scalar field theories in $4-\varepsilon$ dimensions. At leading order it is possible to construct models which give rise to spontaneous scale invariance breaking classically and indeed a massless dilaton can be identified. Beyond leading order, in order to have no anomalous scale symmetry breaking in QFT, the models need to be defined at a Wilson-Fisher fixed point with exact conformal symmetry. It is shown that this requirement on the couplings is incompatible with having the type of flat direction which would be necessary for an exactly massless dilaton. As a result spontaneous scale symmetry breaking and an exactly massless dilaton can not occur in renormalizable, unitary $4-\varepsilon$ dimensional scalar QFT. The arguments apply to $\phi^6$ theory in $3-\varepsilon$ dimensions as well.


Authors / Affiliation: mappings to Contributors and Organizations

See all Organizations.