SciPost logo

Intermittency analysis of charged particles generated in Xe-Xe~collisions at $\sqrt{s_{\rm{NN}}}$ = 5.44 TeV using the AMPT model

Zarina Banoo, Ramni Gupta

SciPost Phys. Proc. 15, 010 (2024) · published 2 April 2024

Proceedings event

51st International Symposium on Multiparticle Dynamics

Abstract

The multiplicity fluctuations are sensitive to QCD phase transition and to the presence of critical point in QCD phase diagram. At critical point a system undergoing phase transition is characterized by large fluctuations in the observables which is an important tool to understand the dynamics of particle production in heavy-ion interactions and phase changes. Multiplicity fluctuations of produced particles is an important observable to characterize the evolving system. Using scaling exponent obtained from the normalized factorial moments of the number of charged hadrons in the two dimensional ($\eta,\phi$) phase space, one can learn about the dynamics of system created in these collisions. Events generated using Xe-Xe collisions at $\sqrt{s_{\rm{NN}}} = 5.44 $ TeV with string-melting (SM) version of the AMPT model are analyzed and the scaling exponent $(\nu)$ for various $p_T$ intervals is determined. It is observed that the calculated value of $\nu$ is larger than the universal value 1.304, as is obtained from Ginzburg-Landau theory for second order phase transition. Here we will also present the results of the dependence of the scaling exponent on the transverse momentum bin width.


Authors / Affiliation: mappings to Contributors and Organizations

See all Organizations.
Funder for the research work leading to this publication