Michael M. Cawte, Xiaoquan Yu, Brian P. Anderson, Ashton S. Bradley
SciPost Phys. 6, 032 (2019) ·
published 13 March 2019

Toggle abstract
· pdf
A quantum vortex dipole, comprised of a closely bound pair of vortices of
equal strength with opposite circulation, is a spatially localized travelling
excitation of a planar superfluid that carries linear momentum, suggesting a
possible analogy with ray optics. We investigate numerically and analytically
the motion of a quantum vortex dipole incident upon a stepchange in the
background superfluid density of an otherwise uniform twodimensional
BoseEinstein condensate. Due to the conservation of fluid momentum and energy,
the incident and refracted angles of the dipole satisfy a relation analogous to
Snell's law, when crossing the interface between regions of different density.
The predictions of the analogue Snell's law relation are confirmed for a wide
range of incident angles by systematic numerical simulations of the
GrossPiteavskii equation. Near the critical angle for total internal
reflection, we identify a regime of anomalous Snell's law behaviour where the
finite size of the dipole causes transient capture by the interface.
Remarkably, despite the extra complexity of the surface interaction, the
incoming and outgoing dipole paths obey Snell's law.