SciPost Phys. 9, 076 (2020) ·
published 19 November 2020
|
· pdf
Employing the fracton-elastic duality, we develop a low-energy effective theory of a zero-temperature vortex crystal in a two-dimensional bosonic superfluid which naturally incorporates crystalline topological defects. We extract static interactions between these defects and investigate several continuous quantum transitions triggered by the Higgs condensation of vortex vacancies/interstitials and dislocations. We propose that the quantum melting of the vortex crystal towards the hexatic or smectic phase may occur via a pair of continuous transitions separated by an intermediate vortex supersolid phase.
SciPost Phys. 8, 065 (2020) ·
published 21 April 2020
|
· pdf
We present a dual formulation of the Cosserat theory of elasticity. In this theory a local element of an elastic body is described in terms of local displacement and local orientation. Upon the duality transformation these degrees of freedom map onto a coupled theory of a vector-valued one-form gauge field and an ordinary $U(1)$ gauge field. We discuss the degrees of freedom in the corresponding gauge theories, the defect matter and coupling to the curved space.