SciPost Phys. 16, 010 (2024) ·
published 9 January 2024
|
· pdf
We consider dual unitary operators and their multi-leg generalizations that have appeared at various places in the literature. These objects can be related to multi-party quantum states with special entanglement patterns: the sites are arranged in a spatially symmetric pattern and the states have maximal entanglement for all bipartitions that follow from the reflection symmetries of the given geometry. We consider those cases where the state itself is invariant with respect to the geometrical symmetry group. The simplest examples are those dual unitary operators which are also self dual and reflection invariant, but we also consider the generalizations in the hexagonal, cubic, and octahedral geometries. We provide a number of constructions and concrete examples for these objects for various local dimensions. All of our examples can be used to build quantum cellular automata in 1+1 or 2+1 dimensions, with multiple equivalent choices for the "direction of time".
SciPost Phys. 8, 055 (2020) ·
published 9 April 2020
|
· pdf
We consider a molecular dynamics method, the so-called flea gas for computing the evolution of entanglement after inhomogeneous quantum quenches in an integrable quantum system. In such systems the evolution of local observables is described at large space-time scales by the Generalized Hydrodynamics approach, which is based on the presence of stable, ballistically propagating quasiparticles. Recently it was shown that the GHD approach can be joined with the quasiparticle picture of entanglement evolution, providing results for entanglement growth after inhomogeneous quenches. Here we apply the flea gas simulation of GHD to obtain numerical results for entanglement growth. We implement the flea gas dynamics for the gapped anisotropic Heisenberg XXZ spin chain, considering quenches from globally homogeneous and piecewise homogeneous initial states. While the flea gas method applied to the XXZ chain is not exact even in the scaling limit (in contrast to the Lieb--Liniger model), it yields a very good approximation of analytical results for entanglement growth in the cases considered. Furthermore, we obtain the {\it full-time} dynamics of the mutual information after quenches from inhomogeneous settings, for which no analytical results are available.