SciPost Phys. 18, 029 (2025) ·
published 22 January 2025
|
· pdf
Information-theoretic methods have led to significant advances in nonperturbative quantum field theory in flat space. In this work, we show that these ideas can be generalized to field theories in a fixed de Sitter space. Focusing on 1+1-dimensional field theories, we derive a boosted strong subadditivity inequality in de Sitter, and show that it implies a C-theorem for renormalization group flows. Additionally, using the relative entropy, we establish a Lorentzian bound on the entanglement and thermal entropies for a field theory inside the static patch. Finally, we discuss possible connections with recent developments using unitarity methods.