SciPost Phys. 6, 077 (2019) ·
published 26 June 2019
|
· pdf
We introduce a model for stochastic transport on a one-dimensional substrate with particles assuming different conformations during their stepping cycles. These conformations correspond to different footprints on the substrate: in order to advance, particles are subject to successive contraction and expansion steps with different characteristic rates. We thus extend the paradigmatic exclusion process, provide predictions for all regimes of these rates that are in excellent agreement with simulations, and show that the current-density relation may be affected considerably. Symmetries are discussed, and exploited. We discuss our results in the context of molecular motors, confronting a hand-over-hand and an inchworm stepping mechanism, as well as for ribosomes.