SciPost Phys. 19, 054 (2025) ·
published 22 August 2025
|
· pdf
Given a two-dimensional quantum lattice model with an Abelian gauge theory interpretation, we investigate a duality operation that amounts to gauging its invertible 1-form symmetry, followed by gauging the resulting 0-form symmetry in a twisted way via a choice of discrete torsion. Using tensor networks, we introduce explicit lattice realisations of the so-called condensation defects, which are obtained by gauging the 1-form symmetry along submanifolds of spacetime, and employ the same calculus to realise the duality operators. By leveraging these tensor network operators, we compute the non-trivial interplay between symmetry-twisted boundary conditions and charge sectors under the duality operation, enabling us to construct isometries relating the dual Hamiltonians. Whenever a lattice gauge theory is left invariant under the duality operation, we explore the possibility of promoting the self-duality to an internal symmetry. We argue that this results in a symmetry structure that encodes the 2-representations of a 2-group.
SciPost Phys. 16, 110 (2024) ·
published 23 April 2024
|
· pdf
We present a framework to systematically investigate higher categorical symmetries in two-dimensional spin systems. Though exotic, such generalised symmetries have been shown to naturally arise as dual symmetries upon gauging invertible symmetries. Our framework relies on an approach to dualities whereby dual quantum lattice models only differ in a choice of module 2-category over some input fusion 2-category. Given an arbitrary two-dimensional spin system with an ordinary symmetry, we explain how to perform the (twisted) gauging of any of its sub-symmetries. We then demonstrate that the resulting model has a symmetry structure encoded into the Morita dual of the input fusion 2-category with respect to the corresponding module 2-category. We exemplify this approach by specialising to certain finite group generalisations of the transverse-field Ising model, for which we explicitly define lattice symmetry operators organised into fusion 2-categories of higher representations of higher groups.