Sean A. Hartnoll, Gary T. Horowitz, Jorrit Kruthoff, Jorge E. Santos
SciPost Phys. 10, 009 (2021) ·
published 15 January 2021
|
· pdf
Charged black holes in anti-de Sitter space become unstable to forming charged scalar hair at low temperatures $T < T_\text{c}$. This phenomenon is a holographic realization of superconductivity. We look inside the horizon of these holographic superconductors and find intricate dynamical behavior. The spacetime ends at a spacelike Kasner singularity, and there is no Cauchy horizon. Before reaching the singularity, there are several intermediate regimes which we study both analytically and numerically. These include strong Josephson oscillations in the condensate and possible 'Kasner inversions' in which after many e-folds of expansion, the Einstein-Rosen bridge contracts towards the singularity. Due to the Josephson oscillations, the number of Kasner inversions depends very sensitively on $T$, and diverges at a discrete set of temperatures $\{T_n\}$ that accumulate at $T_c$. Near these $T_n$, the final Kasner exponent exhibits fractal-like behavior.
SciPost Phys. 9, 001 (2020) ·
published 1 July 2020
|
· pdf
It has been suggested in recent work that the Page curve of Hawking radiation can be recovered using computations in semi-classical gravity provided one allows for "islands" in the gravity region of quantum systems coupled to gravity. The explicit computations so far have been restricted to black holes in two-dimensional Jackiw-Teitelboim gravity. In this note, we numerically construct a five-dimensional asymptotically AdS geometry whose boundary realizes a four-dimensional Hartle-Hawking state on an eternal AdS black hole in equilibrium with a bath. We also numerically find two types of extremal surfaces: ones that correspond to having or not having an island. The version of the information paradox involving the eternal black hole exists in this setup, and it is avoided by the presence of islands. Thus, recent computations exhibiting islands in two-dimensional gravity generalize to higher dimensions as well.