SciPost Phys. 15, 162 (2023) ·
published 13 October 2023
|
· pdf
We improve the holographic description of isospin-asymmetric baryonic matter within the Witten-Sakai-Sugimoto model by accounting for a realistic pion mass, computing the pion condensate dynamically, and including rho meson condensation by allowing the gauge field in the bulk to be anisotropic. This description takes into account the coexistence of baryonic matter with pion and rho meson condensates. Our main result is the zero-temperature phase diagram in the plane of baryon and isospin chemical potentials. We find that the effective pion mass in the baryonic medium increases with baryon density and that, as a consequence, there is no pion condensation in neutron-star matter. Our improved description also predicts that baryons are disfavored at low baryon chemical potentials even for arbitrarily large isospin chemical potential. Instead, rho meson condensation sets in on top of the pion condensate at an isospin chemical potential of about $9.4 m_\pi$. We further observe a highly non-monotonic phase boundary regarding the disappearance of pion condensation.
SciPost Phys. Proc. 6, 019 (2022) ·
published 31 May 2022
|
· pdf
We discuss masses, radii, and tidal deformabilities of neutron stars constructed from the holographic Witten-Sakai-Sugimoto model. Using the same model for crust and core of the star, we combine our theoretical results with the latest astrophysical data, thus deriving more stringent constraints than given by the data alone. For instance, our calculation predicts - independent of the model parameters - an upper limit for the maximal mass of the star of about 2.46 solar masses and a lower limit of the (dimensionless) tidal deformability of a 1.4-solar-mass star of about 277.
SciPost Phys. 11, 029 (2021) ·
published 12 August 2021
|
· pdf
We study baryonic matter with isospin asymmetry, including fully dynamically its interplay with pion condensation. To this end, we employ the holographic Witten-Sakai-Sugimoto model and the so-called homogeneous ansatz for the gauge fields in the bulk to describe baryonic matter. Within the confined geometry and restricting ourselves to the chiral limit, we map out the phase structure in the presence of baryon and isospin chemical potentials, showing that for sufficiently large chemical potentials condensed pions and isospin-asymmetric baryonic matter coexist. We also present first results of the same approach in the deconfined geometry and demonstrate that this case, albeit technically more involved, is better suited for comparisons with and predictions for real-world QCD. Our study lays the ground for future improved holographic studies aiming towards a realistic description of charge neutral, beta-equilibrated matter in compact stars, and also for more refined comparisons with lattice studies at nonzero isospin chemical potential.