Matthew J. S. Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan Kulchytskyy, Xiuzhe Luo, Roger G. Melko, Ejaaz Merali, Giacomo Torlai
SciPost Phys. 7, 009 (2019) ·
published 16 July 2019
|
· pdf
As we enter a new era of quantum technology, it is increasingly important to develop methods to aid in the accurate preparation of quantum states for a variety of materials, matter, and devices. Computational techniques can be used to reconstruct a state from data, however the growing number of qubits demands ongoing algorithmic advances in order to keep pace with experiments. In this paper, we present an open-source software package called QuCumber that uses machine learning to reconstruct a quantum state consistent with a set of projective measurements. QuCumber uses a restricted Boltzmann machine to efficiently represent the quantum wavefunction for a large number of qubits. New measurements can be generated from the machine to obtain physical observables not easily accessible from the original data.