SciPost Phys. 10, 130 (2021) ·
published 4 June 2021
|
· pdf
Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. We employ geometric methods rooted in the functional geometry of the phase space of Yang-Mills theories to: (\textit{1}) characterize a basis for quasilocal degrees of freedom (dof) that is manifestly gauge-covariant also at the boundary; (\textit{2}) tame the non-additivity of the regional symplectic forms upon the gluing of regions; and to (\textit{3}) discuss gauge and global charges in both Abelian and non-Abelian theories from a geometric perspective. Naturally, our analysis leads to splitting the Yang-Mills dof into Coulombic and radiative. Coulombic dof enter the Gauss constraint and are dependent on extra boundary data (the electric flux); radiative dof are unconstrained and independent. The inevitable non-locality of this split is identified as the source of the symplectic non-additivity, i.e. of the appearance of new dof upon the gluing of regions. Remarkably, these new dof are fully determined by the regional radiative dof only. Finally, a direct link is drawn between this split and Dirac's dressed electron.
SciPost Phys. 10, 125 (2021) ·
published 1 June 2021
|
· pdf
I develop a theory of symplectic reduction that applies to bounded regions in electromagnetism and Yang-Mills theory. In this theory gauge-covariant superselection sectors for the electric flux through the boundary of the region play a central role: within such sectors, there exists a natural, canonically defined, symplectic structure for the reduced Yang-Mills theory. This symplectic structure does not require the inclusion of any new degrees of freedom. In the non-Abelian case, it also supports a family of Hamiltonian vector fields, which I call ``flux rotations,'' generated by smeared, Poisson-non-commutative, electric fluxes. Since the action of flux rotations affects the total energy of the system, I argue that flux rotations fail to be dynamical symmetries of Yang-Mills theory restricted to a region. I also consider the possibility of defining a symplectic structure on the union of all superselection sectors. This in turn requires including additional boundary degrees of freedom aka ``edge modes.'' However, I argue that a commonly used phase space extension by edge modes is inherently ambiguous and gauge-breaking.