Giuseppe del Vecchio del Vecchio, Benjamin Doyon, Paola Ruggiero
SciPost Phys. Core 7, 005 (2024) ·
published 14 February 2024
|
· pdf
The large-scale behaviour of entanglement entropy in finite-density states, in and out of equilibrium, can be understood using the physical picture of particle pairs. However, the full theoretical origin of this picture is not fully established yet. In this work, we clarify this picture by investigating entanglement entropy using its connection with the large-deviation theory for thermodynamic and hydrodynamic fluctuations. We apply the universal framework of Ballistic Fluctuation Theory (BFT), based the Euler hydrodynamics of the model, to correlation functions of branch-point twist fields, the starting point for computing Rényi entanglement entropies within the replica approach. Focusing on free fermionic systems in order to illustrate the ideas, we show that both the equilibrium behavior and the dynamics of Rényi entanglement entropies can be fully derived from the BFT. In particular, we emphasise that long-range correlations develop after quantum quenches, and accounting for these explain the structure of the entanglement growth. We further show that this growth is related to fluctuations of charge transport, generalising to quantum quenches the relation between charge fluctuations and entanglement observed earlier. The general ideas we introduce suggest that the large-scale behaviour of entanglement has its origin within hydrodynamic fluctuations.
Giuseppe Del Vecchio Del Vecchio, Andrea De Luca, Alvise Bastianello
SciPost Phys. 12, 060 (2022) ·
published 14 February 2022
|
· pdf
We consider 1D integrable systems supporting ballistic propagation of excitations, perturbed by a localised defect that breaks most conservation laws and induces chaotic dynamics. Focusing on classical systems, we study an out-of-equilibrium protocol engineered activating the defect in an initially homogeneous and far from the equilibrium state. We find that large enough defects induce full thermalisation at their center, but nonetheless the outgoing flow of carriers emerging from the defect is non-thermal due to a generalization of the celebrated Boundary Thermal Resistance effect, occurring at the edges of the chaotic region. Our results are obtained combining ab-initio numerical simulations for relatively small-sized defects, with the solution of the Boltzmann equation, which becomes exact in the scaling limit of large, but weak defects.
Giuseppe Del Vecchio Del Vecchio, Alvise Bastianello, Andrea De Luca, Giuseppe Mussardo
SciPost Phys. 9, 002 (2020) ·
published 6 July 2020
|
· pdf
We study the out-of-equilibrium properties of a classical integrable non-relativistic theory, with a time evolution initially prepared with a finite energy density in the thermodynamic limit. The theory considered here is the Non-Linear Schrodinger equation which describes the dynamics of the one-dimensional interacting Bose gas in the regime of high occupation numbers. The main emphasis is on the determination of the late-time Generalised Gibbs Ensemble (GGE), which can be efficiently semi-numerically computed on arbitrary initial states, completely solving the famous quench problem in the classical regime. We take advantage of known results in the quantum model and the semiclassical limit to achieve new exact results for the momenta of the density operator on arbitrary GGEs, which we successfully compare with ab-initio numerical simulations. Furthermore, we determine the whole probability distribution of the density operator (full counting statistics), whose exact expression is still out of reach in the quantum model.