José Manuel Penín, Kostas Skenderis, Benjamin Withers
SciPost Phys. 12, 182 (2022) ·
published 1 June 2022
|
· pdf
We study strongly coupled mass-deformed-CFT on a fixed de Sitter spacetime in three dimensions via holography. We elucidate the global causal structure of the four-dimensional spacetime dual to the de Sitter invariant vacuum state. The conformal boundaries of de Sitter appear as spacelike defects sourced by the mass deformation, which extend into the bulk as curvature singularities in AdS. We compute all one- and two-point functions of the deformed-CFT stress tensor and a scalar operator order-by-order in the mass deformation for a simple holographic model. These correlation functions admit a spectral representation as a sum of simple poles corresponding to normalisable modes in the bulk.
Michal P. Heller, Alexandre Serantes, Michał Spaliński, Viktor Svensson, Benjamin Withers
SciPost Phys. 10, 123 (2021) ·
published 1 June 2021
|
· pdf
We study the mechanisms setting the radius of convergence of hydrodynamic dispersion relations in kinetic theory in the relaxation time approximation. This introduces a qualitatively new feature with respect to holography: a nonhydrodynamic sector represented by a branch cut in the retarded Green's function. In contrast with existing holographic examples, we find that the radius of convergence in the shear channel is set by a collision of the hydrodynamic pole with a branch point. In the sound channel it is set by a pole-pole collision on a non-principal sheet of the Green's function. More generally, we examine the consequences of the implicit function theorem in hydrodynamics and give a prescription to determine a set of points that necessarily includes all complex singularities of the dispersion relation. This may be used as a practical tool to assist in determining the radius of convergence of hydrodynamic dispersion relations.