Guillaume Bossard, Axel Kleinschmidt, Boris Pioline
SciPost Phys. 8, 054 (2020) ·
published 8 April 2020
|
· pdf
Unlike the $R^4$ and $\nabla^4 R^4$ couplings, whose coefficients are Langlands--Eisenstein series of the U-duality group, the coefficient $\mathcal{E}^{(d)}_{(0,1)}$ of the $\nabla^6 R^4$ interaction in the low-energy effective action of type II strings compactified on a torus $T^d$ belongs to a more general class of automorphic functions, which satisfy Poisson rather than Laplace-type equations. In earlier work, it was proposed that the exact coefficient is given by a two-loop integral in exceptional field theory, with the full spectrum of mutually 1/2-BPS states running in the loops, up to the addition of a particular Langlands--Eisenstein series. Here we compute the weak coupling and large radius expansions of these automorphic functions for any $d$. We find perfect agreement with perturbative string theory up to genus three, along with non-perturbative corrections which have the expected form for 1/8-BPS instantons and bound states of 1/2-BPS instantons and anti-instantons. The additional Langlands--Eisenstein series arises from a subtle cancellation between the two-loop amplitude with 1/4-BPS states running in the loops, and the three-loop amplitude with mutually 1/2-BPS states in the loops. For $d=4$, the result is shown to coincide with an alternative proposal in terms of a covariantised genus-two string amplitude, due to interesting identities between the Kawazumi--Zhang invariant of genus-two curves and its tropical limit, and between double lattice sums for the particle and string multiplets, which may be of independent mathematical interest.
Guillaume Bossard, Charles Cosnier-Horeau, Boris Pioline
SciPost Phys. 7, 028 (2019) ·
published 5 September 2019
|
· pdf
Motivated by precision counting of BPS black holes, we analyze six-derivative couplings in the low energy effective action of three-dimensional string vacua with 16 supercharges. Based on perturbative computations up to two-loop, supersymmetry and duality arguments, we conjecture that the exact coefficient of the $\nabla^2(\nabla\phi)^4$ effective interaction is given by a genus-two modular integral of a Siegel theta series for the non-perturbative Narain lattice times a specific meromorphic Siegel modular form. The latter is familiar from the Dijkgraaf-Verlinde-Verlinde (DVV) conjecture on exact degeneracies of 1/4-BPS dyons. We show that this Ansatz reproduces the known perturbative corrections at weak heterotic coupling, including tree-level, one- and two-loop corrections, plus non-perturbative effects of order $e^{-1/g_3^2}$. We also examine the weak coupling expansions in type I and type II string duals and find agreement with known perturbative results, as well as new predictions for higher genus perturbative contributions. In the limit where a circle in the internal torus decompactifies, our Ansatz predicts the exact $\nabla^2 F^4$ effective interaction in four-dimensional CHL string vacua, along with infinite series of exponentially suppressed corrections of order $e^{-R}$ from Euclideanized BPS black holes winding around the circle, and further suppressed corrections of order $e^{-R^2}$ from Taub-NUT instantons. We show that instanton corrections from 1/4-BPS black holes are precisely weighted by the BPS index predicted from the DVV formula, including the detailed moduli dependence. We also extract two-instanton corrections from pairs of 1/2-BPS black holes, demonstrating consistency with supersymmetry and wall-crossing, and estimate the size of instanton-anti-instanton contributions.
Guillaume Bossard, Charles Cosnier-Horeau, Boris Pioline
SciPost Phys. 3, 008 (2017) ·
published 31 July 2017
|
· pdf
Three-dimensional string models with half-maximal supersymmetry are believed to be invariant under a large U-duality group which unifies the S and T dualities in four dimensions. We propose an exact, U-duality invariant formula for four-derivative scalar couplings of the form $F(\Phi) (\nabla\Phi)^4$ in a class of string vacua known as CHL $\mathbb{Z}_N$ heterotic orbifolds with $N$ prime, generalizing our previous work which dealt with the case of heterotic string on $T^6$. We derive the Ward identities that $F(\Phi)$ must satisfy, and check that our formula obeys them. We analyze the weak coupling expansion of $F(\Phi)$, and show that it reproduces the correct tree-level and one-loop contributions, plus an infinite series of non-perturbative contributions. Similarly, the large radius expansion reproduces the exact $F^4$ coupling in four dimensions, including both supersymmetric invariants, plus infinite series of instanton corrections from half-BPS dyons winding around the large circle, and from Taub-NUT instantons. The summation measure for dyonic instantons agrees with the helicity supertrace for half-BPS dyons in 4 dimensions in all charge sectors. In the process we clarify several subtleties about CHL models in $D=4$ and $D=3$, in particular we obtain the exact helicity supertraces for 1/2-BPS dyonic states in all duality orbits.