Maciej Bartłomiej Kruk, Dawid Hryniuk, Mick Kristensen, Toke Vibel, Krzysztof Pawłowski, Jan Arlt, Kazimierz Rzążewski
SciPost Phys. 14, 036 (2023) ·
published 16 March 2023
|
· pdf
The fluctuations of the atom number between a Bose-Einstein condensate and the surrounding thermal gas have been the subject of a long standing theoretical debate. This discussion is centered around the appropriate thermodynamic ensemble to be used for theoretical predictions and the effect of interactions on the observed fluctuations. Here we introduce the so-called Fock state sampling method to solve this classic problem of current experimental interest for weakly interacting gases. A suppression of the predicted peak fluctuations is observed when using a microcanonical with respect to a canonical ensemble. Moreover, interactions lead to a shift of the temperature of peak fluctuations for harmonically trapped gases. The absolute size of the fluctuations furthermore depends on the total number of atoms and the aspect ratio of the trapping potential. Due to the interplay of these effect, there is no universal suppression or enhancement of fluctuations.
Tomasz Karpiuk, Piotr T. Grochowski, Mirosław Brewczyk, Kazimierz Rzążewski
SciPost Phys. 8, 066 (2020) ·
published 21 April 2020
|
· pdf
We calculate frequencies of collective oscillations of two-component Fermi gas that is kept on the repulsive branch of its energy spectrum. Not only is a paramagnetic phase explored, but also a ferromagnetically separated one. Both in-, and out-of-phase perturbations are investigated, showing contributions from various gas excitations. Additionally, we compare results coming from both time-dependent Hartree-Fock and density-functional approaches.