SciPost Phys. 16, 149 (2024) ·
published 5 June 2024
|
· pdf
We study the scaling limit of a statistical system, which is a special case of the integrable inhomogeneous six-vertex model. It possesses $U_q\big(\mathfrak{sl}(2)\big)$ invariance due to the choice of open boundary conditions imposed. An interesting feature of the lattice theory is that the spectrum of scaling dimensions contains a continuous component. By applying the ODE/IQFT correspondence and the method of the Baxter $Q$ operator the corresponding density of states is obtained. In addition, the partition function appearing in the scaling limit of the lattice model is computed, which may be of interest for the study of nonrational CFTs in the presence of boundaries. As a side result of the research, a simple formula for the matrix elements of the $Q$ operator for the general, integrable, inhomogeneous six-vertex model was discovered, that has not yet appeared in the literature. It is valid for a certain one parameter family of diagonal open boundary conditions in the sector with the $z$-projection of the total spin operator being equal to zero.
SciPost Phys. 11, 057 (2021) ·
published 14 September 2021
|
· pdf
Using the properties of the local Boltzmann weights of integrable interaction-round-a-face (IRF or face) models we express local operators in terms of generalized transfer matrices. This allows for the derivation of discrete functional equations for the reduced density matrices in inhomogeneous generalizations of these models. We apply these equations to study the density matrices for IRF models of various solid-on-solid type and quantum chains of non-Abelian ${SU(2)_3}$ or Fibonacci anyons. Similar as in the six vertex model we find that reduced density matrices for a sequence of consecutive sites can be 'factorized', i.e.\ expressed in terms of nearest-neighbour correlators with coefficients which are independent of the model parameters. Explicit expressions are provided for correlation functions on up to three neighbouring sites.