Arthur Christianen, J. Ignacio Cirac, Richard Schmidt
SciPost Phys. 16, 067 (2024) ·
published 5 March 2024
|
· pdf
Important properties of complex quantum many-body systems and their phase diagrams can often already be inferred from the impurity limit. The Bose polaron problem describing an impurity atom immersed in a Bose-Einstein condensate is a paradigmatic example. The interplay between the impurity-mediated attraction between the bosons and their intrinsic repulsion makes this model rich and interesting, but also complex to describe theoretically. To tackle this challenge, we develop a quantum chemistry-inspired computational technique and compare two variational methods that fully include both the boson-impurity and interboson interactions. We find one regime where the impurity-mediated interactions overcome the repulsion between the bosons, so that a sweep of the boson-impurity interaction strength leads to an instability of the polaron due to the formation of many-body clusters. If instead the interboson interactions dominate, the impurity will experience a crossover from a polaron into a few-body bound state. We achieve a unified understanding incorporating both of these regimes and show that they are experimentally accessible. Moreover, we develop an analytical model that allows us to interpret these phenomena in the Landau framework of phase transitions, revealing a deep connection of the Bose polaron model to both few- and many-body physics.
SciPost Phys. 13, 054 (2022) ·
published 8 September 2022
|
· pdf
The mobile impurity in a Bose-Einstein condensate (BEC) is a paradigmatic many-body problem. For weak interaction between the impurity and the BEC, the impurity deforms the BEC only slightly and it is well described within the Fröhlich model and the Bogoliubov approximation. For strong local attraction this standard approach, however, fails to balance the local attraction with the weak repulsion between the BEC particles and predicts an instability where an infinite number of bosons is attracted toward the impurity. Here we present a solution of the Bose polaron problem beyond the Bogoliubov approximation which includes the local repulsion between bosons and thereby stabilizes the Bose polaron even near and beyond the scattering resonance. We show that the Bose polaron energy remains bounded from below across the resonance and the size of the polaron dressing cloud stays finite. Our results demonstrate how the dressing cloud replaces the attractive impurity potential with an effective many-body potential that excludes binding. We find that at resonance, including the effects of boson repulsion, the polaron energy depends universally on the effective range. Moreover, while the impurity contact is strongly peaked at positive scattering length, it remains always finite. Our solution highlights how Bose polarons are self-stabilized by repulsion, providing a mechanism to understand quench dynamics and nonequilibrium time evolution at strong coupling.