SciPost Phys. Core 7, 011 (2024) ·
published 12 March 2024
|
· pdf
Recently there has been an intense effort to understand measurement induced transitions, but we still lack a good understanding of non-Markovian effects on these phenomena. To that end, we consider two coupled chains of free fermions, one acting as the system of interest, and one as a bath. The bath chain is subject to Markovian measurements, resulting in an effective non-Markovian dissipative dynamics acting on the system chain which is still amenable to numerical studies in terms of quantum trajectories. Within this setting, we study the entanglement within the system chain, and use it to characterize the phase diagram depending on the ladder hopping parameters and on the measurement probability. For the case of pure state evolution, the system is in an area law phase when the internal hopping of the bath chain is small, while a non-area law phase appears when the dynamics of the bath is fast. The non-area law exhibits a logarithmic scaling of the entropy compatible with a conformal phase, but also displays linear corrections for the finite system sizes we can study. For the case of mixed state evolution, we instead observe regions with both area, and non-area scaling of the entanglement negativity. We quantify the non-Markovianity of the system chain dynamics and find that for the regimes of parameters we study, a stronger non-Markovianity is associated to a larger entanglement within the system.
SciPost Phys. 15, 180 (2023) ·
published 30 October 2023
|
· pdf
The calculation of off-diagonal matrix elements has various applications in fields such as nuclear physics and quantum chemistry. In this paper, we present a noisy intermediate scale quantum algorithm for estimating the diagonal and off-diagonal matrix elements of a generic observable in the energy eigenbasis of a given Hamiltonian without explicitly preparing its eigenstates. By means of numerical simulations we show that this approach finds many of the matrix elements for the one and two qubits cases. Specifically, while in the first case, one can initialize the ansatz parameters over a broad interval, in the latter the optimization landscape can significantly slow down the speed of convergence and one should therefore be careful to restrict the initialization to a smaller range of parameters.