Athanasia-Konstantina Angelopoulou, Anh Dung Le, Stéphane Munier
SciPost Phys. Lect. Notes 92 (2025) ·
published 12 March 2025
|
· pdf
We review the factorization of the S-matrix elements in the context of particle scattering off an external field, which can serve as a model for the field of a large nucleus. The factorization takes the form of a convolution of light cone wave functions describing the physical incoming and outgoing states in terms of bare partons, and products of Wilson lines. The latter represent the interaction between the bare partons and the external field. Specializing to elastic scattering amplitudes of onia at very high energies, we introduce the color dipole model, which formulates the calculation of the modulus-squared of the wave functions in quantum chromodynamics with the help of a branching random walk, and the scattering amplitudes as observables on this classical stochastic process. Methods developed for general branching processes produce analytical formulas for the asymptotics of such observables, and thus enable one to derive exact large-rapidity expressions for onium-nucleus cross sections, from which electron-nucleus cross sections may be inferred.
SciPost Phys. Proc. 8, 168 (2022) ·
published 14 July 2022
|
· pdf
We study diffractive scattering cross sections, focusing on the rapidity gap distribution in realistic kinematics at future electron-ion colliders. Our study consists in numerical solutions of the QCD evolution equations in both fixed and running coupling frameworks. The fixed and the running coupling equations are shown to lead to different shapes for the rapidity gap distribution. The obtained distribution when the coupling is fixed exhibits a shape characteristic of a recently developed model for diffractive dissociation, which indicates the relevance of the study of that diffractive observable for the partonic-level understanding of diffraction.