Pieter W. Claeys, Jonah Herzog-Arbeitman, Austen Lamacraft
SciPost Phys. 12, 007 (2022) ·
published 6 January 2022
|
· pdf
We consider a unitary circuit where the underlying gates are chosen to be R-matrices satisfying the Yang-Baxter equation and correlation functions can be expressed through a transfer matrix formalism. These transfer matrices are no longer Hermitian and differ from the ones guaranteeing local conservation laws, but remain mutually commuting at different values of the spectral parameter defining the circuit. Exact eigenstates can still be constructed as a Bethe ansatz, but while these transfer matrices are diagonalizable in the inhomogeneous case, the homogeneous limit corresponds to an exceptional point where multiple eigenstates coalesce and Jordan blocks appear. Remarkably, the complete set of (generalized) eigenstates is only obtained when taking into account a combinatorial number of nontrivial vacuum states. In all cases, the Bethe equations reduce to those of the integrable spin-1 chain and exhibit a global SU(2) symmetry, significantly reducing the total number of eigenstates required in the calculation of correlation functions. A similar construction is shown to hold for the calculation of out-of-time-order correlations.
SciPost Phys. 2, 005 (2017) ·
published 21 February 2017
|
· pdf
We show that exact time dependent single particle Green function in the Imambekov-Glazman theory of nonlinear Luttinger liquids can be written, for any value of the Luttinger parameter, in terms of a particular solution of the Painlev\'e IV equation. Our expression for the Green function has a form analogous to the celebrated Tracy-Widom result connecting the Airy kernel with Painlev\'e II. The asymptotic power law of the exact solution as a function of a single scaling variable $x/\sqrt{t}$ agrees with the mobile impurity results. The full shape of the Green function in the thermodynamic limit is recovered with arbitrary precision via a simple numerical integration of a nonlinear ODE.