Jan Kalinowski, Wojciech Kotlarski, Krzysztof Mekala, Pawel Sopicki, Aleksander Filip Zarnecki
SciPost Phys. Proc. 8, 095 (2022) ·
published 13 July 2022
|
· pdf
As any e$^+$e$^-$ scattering process can be accompanied by a hard photon emission from the initial state radiation, the analysis of the energy spectrum and angular distributions of those photons can be used to search for hard processes with an invisible final state. Thus high energy e$^+$e$^-$ colliders offer a unique possibility for the most general search of Dark matter based on the mono-photon signature. We consider production of DM particles via a mediator at the International Linear Collider (ILC) and Compact Linear Collider (CLIC) experiments taking into account detector effects within the DELPHES fast simulation framework. Limits on the light DM production in a generic model are set for a wide range of mediator masses and widths. For mediator masses up to the centre-of-mass energy of the collider, results from the mono-photon analysis are more stringent than the limits expected from direct resonance searches in Standard Model decay channels.
Krzysztof Mekala, Aleksander Filip Zarnecki, Bohdan Grzadkowski, Michal Iglicki
SciPost Phys. Proc. 8, 091 (2022) ·
published 13 July 2022
|
· pdf
The Compact Linear Collider (CLIC) is a proposed TeV-scale high-luminosity electron-positron collider at CERN. The first CLIC running stage, at 380 GeV, will focus on precision Higgs boson and top quark studies while the main aim of the subsequent high-energy stages, at 1.5 TeV and 3 TeV, is to extend the sensitivity of CLIC to different Beyond the Standard Model (BSM) scenarios. We studied the prospects for measuring invisible Higgs boson and additional heavy scalar decays using CLIC data at 380 GeV and 1.5 TeV. The analysis is based on the WHIZARD event generator, with fast simulation of the CLIC detector response parametrised by the DELPHES package. We present the expected limits for the invisible decays of the 125 GeV Higgs boson, the cross section limits for production of an additional neutral Higgs scalar, assuming its invisible decays, and limits on the mixing angle between the SM-like Higgs boson and the new scalar of the "dark sector" in the framework of the vector-fermion dark matter model.