SciPost Phys. 15, 180 (2023) ·
published 30 October 2023
|
· pdf
The calculation of off-diagonal matrix elements has various applications in fields such as nuclear physics and quantum chemistry. In this paper, we present a noisy intermediate scale quantum algorithm for estimating the diagonal and off-diagonal matrix elements of a generic observable in the energy eigenbasis of a given Hamiltonian without explicitly preparing its eigenstates. By means of numerical simulations we show that this approach finds many of the matrix elements for the one and two qubits cases. Specifically, while in the first case, one can initialize the ansatz parameters over a broad interval, in the latter the optimization landscape can significantly slow down the speed of convergence and one should therefore be careful to restrict the initialization to a smaller range of parameters.
SciPost Phys. 12, 122 (2022) ·
published 8 April 2022
|
· pdf
Simulating the dynamics of many-body quantum systems is believed to be one of the first fields that quantum computers can show a quantum advantage over classical computers. Noisy intermediate-scale quantum (NISQ) algorithms aim at effectively using the currently available quantum hardware. For quantum simulation, various types of NISQ algorithms have been proposed with individual advantages as well as challenges. In this work, we propose a new algorithm, truncated Taylor quantum simulator (TQS), that shares the advantages of existing algorithms and alleviates some of the shortcomings. Our algorithm does not have any classical-quantum feedback loop and bypasses the barren plateau problem by construction. The classical part in our hybrid quantum-classical algorithm corresponds to a quadratically constrained quadratic program (QCQP) with a single quadratic equality constraint, which admits a semidefinite relaxation. The QCQP based classical optimization was recently introduced as the classical step in quantum assisted eigensolver (QAE), a NISQ algorithm for the Hamiltonian ground state problem. Thus, our work provides a conceptual unification between the NISQ algorithms for the Hamiltonian ground state problem and the Hamiltonian simulation. We recover differential equation-based NISQ algorithms for Hamiltonian simulation such as quantum assisted simulator (QAS) and variational quantum simulator (VQS) as particular cases of our algorithm. We test our algorithm on some toy examples on current cloud quantum computers. We also provide a systematic approach to improve the accuracy of our algorithm.
Submissions
Submissions for which this Contributor is identified as an author: