Paul Baireuther, Marcin Płodzień, Teemu Ojanen, Jakub Tworzydło, Timo Hyart
SciPost Phys. Core 6, 087 (2023) ·
published 15 December 2023
|
· pdf
Fascination in topological materials originates from their remarkable response properties and exotic quasiparticles which can be utilized in quantum technologies. In particular, large-scale efforts are currently focused on realizing topological superconductors and their Majorana excitations. However, determining the topological nature of superconductors with current experimental probes is an outstanding challenge. This shortcoming has become increasingly pressing due to rapidly developing designer platforms which are theorized to display very rich topology and are better accessed by local probes rather than transport experiments. We introduce a robust machine learning protocol for classifying the topological states of two-dimensional (2D) chiral superconductors and insulators from local density of states (LDOS) data. Since the LDOS can be measured with standard experimental techniques, our protocol contributes to overcoming the almost three decades standing problem of identifying the topological phase of 2D superconductors with broken time-reversal symmetry.
SciPost Phys. Core 6, 030 (2023) ·
published 17 April 2023
|
· pdf
The characterization of many-body correlations provides a powerful tool for analyzing correlated quantum materials. However, experimental extraction of quantum entanglement in correlated electronic systems remains an open problem in practice. In particular, the correlation entropy quantifies the strength of quantum correlations in interacting electronic systems, yet it requires measuring all the single-particle correlators of a macroscopic sample. To circumvent this bottleneck, we introduce a strategy to obtain the correlation entropy of electronic systems solely from a set of local measurements. We show that, by combining local particle-particle and density-density correlations with a neural-network algorithm, the correlation entropy can be predicted accurately. Specifically, we show that for a generalized interacting fermionic model, our algorithm yields an accurate prediction of the correlation entropy from a set of noisy local correlators. Our work shows that the correlation entropy in interacting electron systems can be reconstructed from local measurements, providing a starting point to experimentally extract many-body correlations with local probes.