Michele Coppola, Mari Carmen Bañuls, Zala Lenarčič
SciPost Phys. 19, 149 (2025) ·
published 8 December 2025
|
· pdf
The dynamics of local observables in a quantum many-body system can be formally described in the language of open systems. The problem is that the bath representing the complement of the local subsystem generally does not allow the common simplifications often crucial for such a framework. Leveraging tensor network calculations and optimization tools from machine learning, we extract and characterize the dynamical maps for single- and two-site subsystems embedded in an infinite quantum Ising chain after a global quench. We consider three paradigmatic regimes: integrable critical, integrable non-critical, and chaotic. For each we find the optimal time-local representation of the subsystem dynamics at different times. We explore the properties of the learned time-dependent Liouvillians and whether they can be used to forecast the long-time dynamics of local observables beyond the times accessible through direct quantum many-body numerical simulation. Our procedure naturally suggests a novel measure of non-Markovianity based on the distance between the quasi-exact dynamical map and the closest CP-divisible form and reveals that criticality leads to the closest Markovian representation at large times.
Miguel Frías-Pérez, Michael Mariën, David Pérez García, Mari Carmen Bañuls, Sofyan Iblisdir
SciPost Phys. 14, 123 (2023) ·
published 22 May 2023
|
· pdf
We introduce a Metropolis-Hastings Markov chain for Boltzmann distributions of classical spin systems. It relies on approximate tensor network contractions to propose correlated collective updates at each step of the evolution. We present benchmark computations for a wide variety of instances of the two-dimensional Ising model, including ferromagnetic, antiferromagnetic, (fully) frustrated and Edwards-Anderson spin glass instances, and we show that, with modest computational effort, our Markov chain achieves sizeable acceptance rates, even in the vicinity of critical points. In each of the situations we have considered, the Markov chain compares well with other Monte Carlo schemes such as the Metropolis or Wolff's algorithm: equilibration times appear to be reduced by a factor that varies between $40$ and $2000$, depending on the model and the observable being monitored. We also present an extension to three spatial dimensions, and demonstrate that it exhibits fast equilibration for finite ferro- and antiferromagnetic instances. Additionally, and although it is originally designed for a square lattice of finite degrees of freedom with open boundary conditions, the proposed scheme can be used as such, or with slight modifications, to study triangular lattices, systems with continuous degrees of freedom, matrix models, a confined gas of hard spheres, or to deal with arbitrary boundary conditions.