Sergio Enrique Tapias Arze, Pieter W. Claeys, Isaac Pérez Castillo, Jean-Sébastien Caux
SciPost Phys. Core 3, 001 (2020) ·
published 22 July 2020
|
· pdf
We consider the dynamics of an XY spin chain subjected to an external transverse field which is periodically quenched between two values. By deriving an exact expression of the Floquet Hamiltonian for this out-of-equilibrium protocol with arbitrary driving frequencies, we show how, after an unfolding of the Floquet spectrum, the parameter space of the system is characterized by alternations between local and non-local regions, corresponding respectively to the absence and presence of Floquet resonances. The boundary lines between regions are obtained analytically from avoided crossings in the Floquet quasi-energies and are observable as phase transitions in the synchronized state. The transient behaviour of dynamical averages of local observables similarly undergoes a transition, showing either a rapid convergence towards the synchronized state in the local regime, or a rather slow one exhibiting persistent oscillations in the non-local regime, where explicit decay coefficients are presented.
SciPost Phys. 8, 036 (2020) ·
published 5 March 2020
|
· pdf
We consider an integrable system of two one-dimensional fermionic chains connected by a link. The hopping constant at the link can be different from that in the bulk. Starting from an initial state in which the left chain is populated while the right is empty, we present time-dependent full counting statistics and the Loschmidt echo in terms of Fredholm determinants. Using this exact representation, we compute the above quantities as well as the current through the link, the shot noise and the entanglement entropy in the large time limit. We find that the physics is strongly affected by the value of the hopping constant at the link. If it is smaller than the hopping constant in the bulk, then a local steady state is established at the link, while in the opposite case all physical quantities studied experience persistent oscillations. In the latter case the frequency of the oscillations is determined by the energy of the bound state and, for the Loschmidt echo, by the bias of chemical potentials.