Andrii Chaika, Artem O. Oliinyk, Ihor V. Yatsuta, Nick P. Proukakis, Mark Edwards, Alexander I. Yakimenko, Thomas Bland
SciPost Phys. 19, 005 (2025) ·
published 2 July 2025
|
· pdf
Persistent currents–inviscid quantized flow around an atomic circuit–are a crucial building block of atomtronic devices. We investigate how acceleration influences the transfer of persistent currents between two density-connected, ring-shaped atomic Bose-Einstein condensates, joined by a tunable weak link that controls system topology. We find that the acceleration of this system modifies both the density and phase dynamics between the rings, leading to a bias in the periodic vortex oscillations studied in T. Bland et al., Phys. Rev. Research 4, 043171 (2022). Accounting for dissipation suppressing such vortex oscillations, the acceleration facilitates a unilateral vortex transfer to the leading ring. We analyze how this transfer depends on the weak-link amplitude, the initial persistent current configuration, and the acceleration strength and direction. Characterization of the sensitivity to these parameters paves the way for a new platform for acceleration measurements, for which we outline a proof-of-concept ultracold double-ring accelerometer.
Yi-Hsieh Wang, Ted Jacobson, Mark Edwards, Charles W. Clark
SciPost Phys. 3, 022 (2017) ·
published 26 September 2017
|
· pdf
Analog black/white hole pairs, consisting of a region of supersonic flow, have been achieved in a recent experiment by J. Steinhauer using an elongated Bose-Einstein condensate. A growing standing density wave, and a checkerboard feature in the density-density correlation function, were observed in the supersonic region. We model the density-density correlation function, taking into account both quantum fluctuations and the shot-to-shot variation of atom number normally present in ultracold-atom experiments. We find that quantum fluctuations alone produce some, but not all, of the features of the correlation function, whereas atom-number fluctuation alone can produce all the observed features, and agreement is best when both are included. In both cases, the density-density correlation is not intrinsic to the fluctuations, but rather is induced by modulation of the standing wave caused by the fluctuations.