SciPost Phys. 18, 213 (2025) ·
published 30 June 2025
|
· pdf
Topological holography is a holographic principle that describes the generalized global symmetry of a local quantum system in terms of a topological order in one higher dimension. This framework separates the topological data from the local dynamics of a theory and provides a unified description of the symmetry and duality in gapped and gapless phases of matter. In this work, we develop the topological holographic picture for (1+1)$d$ quantum phases, including both gapped phases as well as a wide range of quantum critical points, including phase transitions between symmetry protected topological (SPT) phases, symmetry enriched quantum critical points, deconfined quantum critical points, and intrinsically gapless SPT phases. Topological holography puts a strong constraint on the emergent symmetry and the anomaly for these critical theories. We show how the partition functions of these critical points can be obtained from dualizing (orbifolding) more familiar critical theories. The topological responses of the defect operators are also discussed in this framework. We further develop a topological holographic picture for conformal boundary states of (1+1)$d$ rational conformal field theories. This framework provides a simple physical picture to understand conformal boundary states and also uncovers the nature of the gapped phases corresponding to the boundary states.
SciPost Phys. 14, 065 (2023) ·
published 11 April 2023
|
· pdf
(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of $\mathbb{Z}_2$ gauge theory with fermionic charges, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ($D_n$) and alternating ($A_6$) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an $H^4$ cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D $A_6$ gauge theory.