Diego Liska, Vladimir Gritsev, Ward Vleeshouwers, Jiří Minář
SciPost Phys. 15, 106 (2023) ·
published 20 September 2023
|
· pdf
We discuss a construction of quantum many-body scars in the context of holography. We consider two-dimensional conformal field theories and use their dynamical symmetries, naturally realized through the Virasoro algebra, to construct scarred states. By studying their Loschmidt amplitude, we evaluate the states' periodic properties. A geometrical interpretation allows us to compute the expectation value of the stress tensor and entanglement entropy of these scarred states. We show that their holographic dual is related by a diffeomorphism to empty AdS, even for energies above the black hole threshold. We also demonstrate that expectation values in the scarred states are generally non-thermal and that their entanglement entropy grows with the energy as $\log(E)$ in contrast to $\sqrt{E}$ for the typical (bulk) states. Furthermore, we identify fixed points on the CFT plane associated with divergent or vanishing entanglement entropy in the limit where the scarred states have infinite energy.
SciPost Phys. 11, 059 (2021) ·
published 16 September 2021
|
· pdf
Supersymmetric lattice models of constrained fermions are known to feature exotic phenomena such as superfrustration, with an extensive degeneracy of ground states, the nature of which is however generally unknown. Here we address this issue by considering a superfrustrated model, which we deform from the supersymetric point. By numerically studying its two-parameter phase diagram, we reveal a rich phenomenology. The vicinity of the supersymmetric point features period-4 and period-5 density waves which are connected by a floating phase (incommensurate Luttinger liquid) with smoothly varying density. The supersymmetric point emerges as a multicritical point between these three phases. Inside the period-4 phase we report a valence-bond solid type ground state that persists up to the supersymmetric point. Our numerical data for transitions out of density-wave phases are consistent with the Pokrovsky-Talapov universality class. Furthermore, our analysis unveiled a period-3 phase with a boundary determined by a competition between single and two-particle instabilities accompanied by a doubling of the wavevector of the density profiles along a line in the phase diagram.