Baptiste Bermond, Maxim Nikolaevich Chernodub, Adolfo G. Grushin, David Carpentier
SciPost Phys. 16, 084 (2024) ·
published 25 March 2024
|
· pdf
Building on the idea of Tolman and Ehrenfest that heat has weight, Luttinger established a deep connection between gravitational fields and thermal transport. However, this relation does not include anomalous quantum fluctuations that become paramount in strongly curved spacetime. In this work, we revisit the celebrated Tolman-Ehrenfest and Luttinger relations and show how to incorporate the quantum energy scales associated with these fluctuations, captured by gravitational anomalies of quantum field theories. We point out that such anomalous fluctuations naturally occur in the quantum atmosphere of a black hole. Our results reveal that analogous fluctuations are also observable in thermal conductors in flat-space time provided local temperature varies strongly. As a consequence, we establish that the gravitational anomalies manifest themselves naturally in non-linear thermal response of a quantum wire. In addition, we propose a systematic way to identify thermal analogues of black hole's anomalous quantum fluctuations associated to gravitational anomalies. We identify their signatures in propagating energy waves following a thermal quench, as well as in the energy density of heating Floquet states induced by repeated thermal quenches.
N. V. Gerasimeniuk, M. N. Chernodub, V. A. Goy, D. L. Boyda, S. D. Liubimov, A. V. Molochkov
SciPost Phys. Proc. 6, 020 (2022) ·
published 31 May 2022
|
· pdf
We discuss the prediction of critical behavior of lattice observables in SU(2) and SU(3) gauge theories. We show that feed-forward neural network, trained on the lattice configurations of gauge fields as input data, finds correlations with the target observable, which is also true in the critical region where the neural network has not been trained. We have verified that the neural network constructs a gauge-invariant function and this property does not change over the entire range of the parameter space.
Matteo Baggioli, Maxim N. Chernodub, Karl Landsteiner, Maria A. H. Vozmediano
SciPost Phys. Core 3, 013 (2020) ·
published 2 December 2020
|
· pdf
Torsional strain in Weyl semimetals excites a unidirectional chiral density wave propagating in the direction of the torsional vector. This gapless excitation, named the chiral sound wave, is generated by a particular realization of the axial anomaly via the triple-axial (AAA) anomalous diagram. We show that the presence of the torsion-generated chiral sound leads to a linear behavior of the specific heat of a Weyl semimetal and to an enhancement of the thermal conductivty at experimentally accessible temperatures. We also demonstrate that such an elastic twist lowers the temperature of the sample, thus generating a new, anomalous type of elasto-calorific effect. Measurements of these thermodynamical effects will provide experimental verification of the exotic triple-axial anomaly as well as the reality of the elastic pseudomagnetic fields in Weyl semimetals.