SciPost Phys. 18, 011 (2025) ·
published 10 January 2025
|
· pdf
Neural Quantum States (NQS) have demonstrated significant potential in approximating ground states of many-body quantum systems, though their performance can be inconsistent across different models. This study investigates the performance of NQS in approximating the ground state of the Hofstadter-Bose-Hubbard (HBH) model, an interacting boson system on a two-dimensional square lattice with a perpendicular magnetic field. Our results indicate that increasing magnetic flux leads to a substantial increase in energy error, up to three orders of magnitude. Importantly, this decline in NQS performance is consistent across different optimization methods, neural network architectures, and physical model parameters, suggesting a significant challenge intrinsic to the model. Despite investigating potential causes such as wave function phase structure, quantum entanglement, fractional quantum Hall effect, and the variational loss landscape, the precise reasons for this degradation remain elusive. The HBH model thus proves to be an effective testing ground for exploring the capabilities and limitations of NQS. Our study highlights the need for advanced theoretical frameworks to better understand the expressive power of NQS which would allow a systematic development of methods that could potentially overcome these challenges.
SciPost Phys. 15, 229 (2023) ·
published 6 December 2023
|
· pdf
The representation of a quantum wave function as a neural network quantum state (NQS) provides a powerful variational ansatz for finding the ground states of many-body quantum systems. Nevertheless, due to the complex variational landscape, traditional methods often employ the computation of quantum geometric tensor, consequently complicating optimization techniques. Contributing to efforts aiming to formulate alternative methods, we introduce an approach that bypasses the computation of the metric tensor and instead relies exclusively on first-order gradient descent with Euclidean metric. This allows for the application of larger neural networks and the use of more standard optimization methods from other machine learning domains. Our approach leverages the principle of imaginary time evolution by constructing a target wave function derived from the Schrödinger equation, and then training the neural network to approximate this target. We make this method adaptive and stable by determining the optimal time step and keeping the target fixed until the energy of the NQS decreases. We demonstrate the benefits of our scheme via numerical experiments with 2D $J_1-J_2$, Heisenberg model, which showcase enhanced stability and energy accuracy in comparison to direct energy loss minimization. Importantly, our approach displays competitiveness with the well-established density matrix renormalization group method and NQS optimization with stochastic reconfiguration.