Mathis Gerdes, Pim de Haan, Corrado Rainone, Roberto Bondesan, Miranda C. N. Cheng
SciPost Phys. 15, 238 (2023) ·
published 13 December 2023
|
· pdf
We propose a novel machine learning method for sampling from the high-dimensional probability distributions of Lattice Field Theories, which is based on a single neural ODE layer and incorporates the full symmetries of the problem. We test our model on the $\phi^4$ theory, showing that it systematically outperforms previously proposed flow-based methods in sampling efficiency, and the improvement is especially pronounced for larger lattices. Furthermore, we demonstrate that our model can learn a continuous family of theories at once, and the results of learning can be transferred to larger lattices. Such generalizations further accentuate the advantages of machine learning methods.
Corrado Rainone, Pierfrancesco Urbani, Francesco Zamponi, Edan Lerner, and Eran Bouchbinder
SciPost Phys. Core 4, 008 (2021) ·
published 16 April 2021
|
· pdf
Structural glasses feature quasilocalized excitations whose frequencies $\omega$ follow a universal density of states ${\cal D}(\omega)\!\sim\!\omega^4$. Yet, the underlying physics behind this universality is not yet fully understood. Here we study a mean-field model of quasilocalized excitations in glasses, viewed as groups of particles embedded inside an elastic medium and described collectively as anharmonic oscillators. The oscillators, whose harmonic stiffness is taken from a rather featureless probability distribution (of upper cutoff $\kappa_0$) in the absence of interactions, interact among themselves through random couplings (characterized by strength $J$) and with the surrounding elastic medium (an interaction characterized by a constant force $h$). We first show that the model gives rise to a gapless density of states ${\cal D}(\omega)\!=\!A_{\rm g}\,\omega^4$ for a broad range of model parameters, expressed in terms of the strength of stabilizing anharmonicity, which plays a decisive role in the model. Then --- using scaling theory and numerical simulations --- we provide a complete understanding of the non-universal prefactor $A_{\rm g}(h,J,\kappa_0)$, of the oscillators' interaction-induced mean square displacement and of an emerging characteristic frequency, all in terms of properly identified dimensionless quantities. In particular, we show that $A_{\rm g}(h,J,\kappa_0)$ is a non-monotonic function of $J$ for a fixed $h$, varying predominantly exponentially with $-(\kappa_0 h^{2/3}\!/J^2)$ in the weak interactions (small $J$) regime --- reminiscent of recent observations in computer glasses --- and predominantly decays as a power-law for larger $J$, in a regime where $h$ plays no role. We discuss the physical interpretation of the model and its possible relations to available observations in structural glasses, along with delineating some future research directions.