SciPost Phys. 17, 024 (2024) ·
published 29 July 2024
|
· pdf
We propose an interferometric method to probe pair correlations in a gas of spin-$1/2$ fermions. The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the transferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the molecular Bose-Einstein condensate regime.
SciPost Phys. 12, 108 (2022) ·
published 28 March 2022
|
· pdf
We study the fermionic quasiparticle spectrum in a zero-temperature superfluid Fermi gas, and in particular how it is modified by different disintegration processes. On top of the disintegration by emission of a collective boson ($1\to2$, subject of a previous study, PRL 124, 073404), we consider here disintegration events where three quasiparticles are emitted ($1\to3$). We show that both disintegration processes are described by a $t$-matrix self-energy (as well as some highly off-resonant vacuum processes), and we characterize the associated disintegration continua. At strong coupling, we show that the quasiparticle spectrum is heavily distorted near the $1\to3$ disintegration threshold. Near the dispersion minimum, where the quasiparticles remain well-defined, the main effect of the off-shell disintegration processes is to shift the location of the minimum by a value that corresponds to the Hartree shift in the BCS limit. With our approximation of the self-energy, the correction to the energy gap with respect to the mean-field result however remains small, in contrast with experimental measurements.