SciPost Phys. 14, 082 (2023) ·
published 25 April 2023
|
· pdf
Nonlinear electrical response permits a unique window into effects of band structure geometry. It can be calculated either starting from a Boltzmann approach for small frequencies, or using Kubo's formula for resonances at finite frequency. However, a precise connection between both approaches has not been established. Focusing on the second order nonlinear response, here we show how the semiclassical limit can be recovered from perturbation theory in the velocity gauge, provided that finite quasiparticle lifetimes are taken into account. We find that matrix elements related to the band geometry combine in this limit to produce the semiclassical nonlinear conductivity. We demonstrate the power of the new formalism by deriving a quantum contribution to the nonlinear conductivity which is of order $\tau^{-1}$ in the relaxation time $\tau$, which is principally inaccessible within the Boltzmann approach. We outline which steps can be generalized to higher orders in the applied perturbation, and comment about potential experimental signatures of our results.
Carolyn Zhang, Tobias Holder, Netanel H. Lindner, Mark Rudner, Erez Berg
SciPost Phys. 12, 124 (2022) ·
published 11 April 2022
|
· pdf
Two-dimensional periodically driven systems can host an unconventional topological phase unattainable for equilibrium systems, termed the Anomalous Floquet-Anderson insulator (AFAI). The AFAI features a quasi-energy spectrum with chiral edge modes and a fully localized bulk, leading to non-adiabatic but quantized charge pumping. Here, we show how such a Floquet phase can be realized in a driven, disordered Quantum Anomalous Hall insulator, which is assumed to have two critical energies where the localization length diverges, carrying states with opposite Chern numbers. Driving the system at a frequency close to resonance between these two energies localizes the critical states and annihilates the Chern bands, giving rise to an AFAI phase. We exemplify this principle by studying a model for a driven, magnetically doped topological insulator film, where the annihilation of the Chern bands and the formation of the AFAI phase is demonstrated using the rotating wave approximation. This is complemented by a scaling analysis of the localization length for two copies of a quantum Hall network model with a tunable coupling between them. We find that by tuning the frequency of the driving close to resonance, the driving strength required to stabilize the AFAI phase can be made arbitrarily small.