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Motivated by the order fractionalization in Kitaev-Kondo model, we propose an exactly solvable
spin-charge ladder model to study the order fractionalization with discrete symmetry. The spin-
charge ladder is composed of a spin chain and a superconducting wire coupled via an Ising-type
interaction, and we obtain the exact solution in the flat band limit. The exact solution reveals the
Z2 order fractionalization with dual symmetry breaking and intertwined order parameters. We in-
vestigate the topological phase transition of the spin-charge ladder via the spectral chiral index, and
identify the correlated topological superconductor (TSC*) phase with gapped Z2 Kondo flux excita-
tions. We demonstrate Majorana spinons generated odd frequency pairing in the superconducting
wire. We also discuss the order fractionalization in the perspective of Z2 lattice gauge theory.

I. INTRODUCTION

Fractionalization is an intriguing concept in theoretical
physics and plays a vital role in understanding the exotic
phenomenon in strongly correlated systems, such as the
quasiparticles with fractional charge and fractional statis-
tics in fractional quantum Hall effect1,2. In the devel-
opment of the theory of high-temperature superconduc-
tivity, the perspective of fractionalization provides pro-
found insights. In the slave-particle theory, the electron is
fractionalized into spinon and holon carrying the charge
and spin degrees of freedom respectively3. However,
the slave-particle theory inevitably introduces gauge field
and the corresponding lattice gauge theory with con-
tinuous gauge symmetry suffers from the confinement
problem4 that can invalid the spin-charge separation sce-
nario. A different Z2 gauge theory of electron fractional-
ization with discrete Z2 gauge symmetry is proposed to
implement the deconfined insulating phase5. The gapped
vortex excitations, i.e. visons, of the Z2 gauge field en-
sure the insulating phase is fractionalized. The milestone
is the celebrated Kitaev’s honeycomb model6, an exactly
solvable model manifesting Majorana fractionalization of
spins. Such an exact solution provides a solid foundation
for the theoretical framework of fractionalization.

Along the lines of Majorana fractionalization of spins,
Tsvelik and Coleman propose a novel concept termed
order fractionalization in the Kitaev-Kondo model7.
Started with the generalized Kitaev’s honeycomb model
with SU (2) spin symmetry, i.e. the Yao-Lee model8,
the low-energy excitations of the quantum spin liquid
are gapless Majorana spinons and gapped visons. By
coupling the Yao-Lee spin liquid to the conduction elec-
tron via the Kondo interaction, they explore the pos-
sibility that a fractionalized Majorana spinon and an
electron form a bound state. The composite boson in-
herits fractional quantum numbers from the Majorana
spinon and electron. The condensation of the compos-
ite boson gives rise to the order fractionalization with

fractionalized order parameters. The order fractional-
ization neither like conventional order as its fractional
quantum numbers, nor like topological order as its sym-
metry breaking. The mean-field theory of Kitaev-Kondo
model in two dimensions and random phase approxi-
mation theory of Coleman-Panigrahi-Tsvelik model9 in
three dimensions demonstrate the rich phenonmenon in
order fractionalization, such as pair density wave and
odd-frequency pairing.

In this paper, we propose a spin-charge ladder model
composed of a spin chain and a superconducting wire.
We obtain the exact solution of the spin-charge ladder
in the flat band limit. With the help of the exact so-
lution, we study the Z2 order fractionalization therein
and derive the exact results about dual symmetry break-
ing and intertwined order parameters. In the perspec-
tive of Majorana-SSH model, we explore the topological
phase transition of the spin-charge ladder. In the low-
energy, we clearly demonstrate that Majorana spinons
effectively generate odd frequency pairing in the super-
conducting wire. The current study offers valuable exact
results about order fractionalization for future study.

The paper is organized as follows. First, in Sec. II, we
introduce the model Hamiltonian of the spin-charge lad-
der. In Sec. III, we study the spin chain in combination of
Majorana fractionalization and Jordan-Wigner transfor-
mation. We propose the Majorana-SSH model to under-
stand the topological phase transition of the spin chain.
In Sec. IV, we employ the perspective of Majorana-SSH
model to study the superconducting wire. In Sec. V,
we obtain the exact solution of the spin-charge ladder in
the flat band limit, and explore the Z2 order fractional-
ization, topological phase transition, and odd frequency
pairing. Finally, we summarize the results and discuss
the case away from the flat band limit in Sec. VI.
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FIG. 1: Schematic of the spin-charge ladder. The white and
grey points denote the spin and charge degrees of freedom. Jx

and Jy are the coupling constants of alternating Ising interac-
tions of the spin chain. tx, ty and ∆x, ∆y are the alternating
hopping matrix elements and pairing potentials respectively
of the superconducting wire. K is the coupling constant of
the Ising-type interaction between the spin chain and super-
conducting wire.

II. MODEL HAMILTONIAN

Consider a lattice model describing a spin chain cou-
pled to a spinless superconducting wire via an Ising-type
interaction, the full Hamiltonian consists of three parts

H = HS +HC +HI , (1)

HS =
∑
j

(
Jxσ

x
2j−1σ

x
2j + Jyσ

y
2jσ

y
2j+1

)
, (2)

HC =
∑
j

(
txc

†
2j−1c2j + tyc

†
2jc2j+1 + h.c.

)
+
∑
j

(
∆xc

†
2j−1c

†
2j +∆yc

†
2jc

†
2j+1 + h.c.

)
, (3)

HI =
∑
j

Kσz
j

(
c†jcj − cjc

†
j

)
, (4)

where j denotes the lattice site. σα
j (α = x, y, z) are Pauli

matrices denoting the spin degrees of freedom. HS de-
scribes a spin chain with alternating Ising interactions in
the x and y-directions, and the coupling constants are
Jx and Jy respectively. The spin chain can be viewed
as the one-dimensional limit of the Kitaev’s honeycomb

model6. c†j and cj are the creation and annihilation op-
erators of spinless fermions or spin polarized electrons
denoting the charge degrees of freedom. HC describes
a spinless superconductor wire with dimerized hopping
and pairing, the hopping matrix elements are tx and ty,
and the pairing potentials are ∆x and ∆y. The hopping
part of HC is the spinless Su-Schrieffer-Heeger (SSH)
model10, and HC is the dimerized Kitaev chain11. HI

is an Ising-type interaction that couples the spin and
charge degrees of freedom with the coupling constant K.

c†jcj − cjc
†
j = 2

(
c†jcj − 1/2

)
= ±1 is the charge den-

sity measured with respect to half-filling that features
the Ising characteristic. HI resembles the z-component
of the Kondo coupling. The above toy model extracts
the three essential elements of the Kitaev-Kondo model,

i.e. spin, fermion and coupling, to realize the order frac-
tionalization, and is called spin-charge ladder as shown
in FIG. 1.

III. SPIN CHAIN: MAJORANA-SSH MODEL

We first consider the decoupled limit and study the
spin chain and superconducting wire separately, then
adopt the consistent perspective to investigate the spin-
charge ladder. The spin operators can be represented
by Majorana fermion operators and we shall employ two
Majorana fermion representations. The first local Majo-
rana fermion representation represents the spin operators
in terms of four Majorana fermions locally through the
Majorana fractionalization

σx
j = iγxj γ

z
j , (5)

σy
j = iγxj γ

t
j , (6)

σz
j = iγxj γ

y
j , (7)

where γαj (α = x, y, z, t) are Majorana fermion operators
satisfying the Clifford algebra(

γαj
)†

= γαj , (8){
γαj , γ

β
l

}
= 2δαβδjl. (9)

As the quantum dimension of single Majorana fermion
operator is

√
2, four Majorana fermions enlarge the local

two-dimensional spin Hilbert space to four-dimensional
enlarged Hilbert space. To faithfully represent the spin
degrees of freedom, one method is using the projection
operator to eliminate the redundant degrees of freedom.
In consideration of the local identities in the spin Hilbert
space

σx
j σ

y
j σ

z
j = i, (10)

the local constraints are imposed

D̂j ≡ γxj γ
y
j γ

z
j γ

t
j = 1, (11)

which halves the dimensions of the enlarged Hilbert
space. The spin wavefunction can be obtained from the
Majorana fermion wavefunction through the Gutzwiller
projection12

|ψspin⟩ = P̂G |ψMajorana⟩ , (12)

where P̂G =
∏

j

(
D̂j + 1

)
/2 is the projection operator.

Another method is treating the redundant degrees of free-
dom as gauge degrees of freedom. The Z2 gauge operator
D̂j implements the local Z2 gauge transformation

D̂jγ
α
j D̂j = −γαj . (13)

The spin wavefunction is the equal weight linear super-
position of gauge equivalent Majorana fermion wavefunc-
tions. Therefore the Majorana fractionalization of spins
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renders the spin model into Z2 lattice gauge theory. The
Hamiltonian of the spin chain in the local Majorana
fermion representation is given by

HS =
∑
j

(
Jxû2j−1iγ

x
2j−1γ

x
2j − Jyû2jiγ

x
2jγ

x
2j+1

)
, (14)

where

û2j−1 = −iγz2j−1γ
z
2j , (15)

û2j = iγt2jγ
t
2j+1. (16)

The operators ûj satisfy û2j = 1, and have Z2 eigenval-
ues uj = ±1. Under local Z2 gauge transformation, the
operators ûj transform as

ûj → Λj ûjΛj+1, (17)

where Λj = ±1. Hence the operators ûj are called Z2

gauge field. We can choose the axial gauge

ûj = 1, (18)

to simplify the following calculations. In one-dimensional
chain, the axial gauge fixes all the redundant gauge de-
grees of freedom. To justify the axial gauge, we intro-
duce the second nonlocal Majorana fermion representa-
tion that represents the spin operators in terms of Ma-
jorana fermions nonlocally through the Jordan-Wigner
transformation

σx
2j−1 = γy2j−1

∏
l<2j−1

iγxl γ
y
l , (19)

σy
2j−1 = γx2j−1

∏
l<2j−1

iγxl γ
y
l , (20)

σx
2j = −γx2j

∏
l<2j

iγxl γ
y
l , (21)

σy
2j = γy2j

∏
l<2j

iγxl γ
y
l , (22)

σz
j = iγxj γ

y
j , (23)

where different conventions on two sublattices are chosen
to obtain the concise form of the Hamiltonian HS . The
Hamiltonian of the spin chain in the nonlocal Majorana
fermion representation is given by

HS =
∑
j

(
Jxiγ

x
2j−1γ

x
2j − Jyiγ

x
2jγ

x
2j+1

)
, (24)

which is the same as local Majorana fermion representa-
tion in the axial gauge. Thus the covention of nonlocal
Jordan-Wigner string is equivalent to the gauge fixing.
On average, one spin is represented by two Majorana
fermions in the nonlocal Majorana fermion representa-
tion. Therefore the dimension of the spin Hilbert space is
the same as the Majorana fermion Hilbert space. We can
directly retrospect the spin degrees of freedom from the
inverse Jordan-Wigner transformation. Meanwhile the

𝐽x −𝐽𝑦 𝛾j
𝑥

𝛾j
𝑡

𝛾j
𝑦

𝛾j
𝑧

 𝑢j

𝜎𝑗+1

𝐽x −𝐽𝑦 𝛾j
𝑥

𝛾j
𝑦

𝜎𝑗+1

𝑎

𝑏

FIG. 2: The local (a) and nonlocal (b) Majorana representa-
tions of the spin chain. Each white circle denotes one spin,
and each black point denotes one Majorana fermion. The
dashed lines denote the Z2 gauge field ûj . The alternating
solid lines connecting the γx

j ’s constitute the Majorana-SSH
model.

local Majorana fermion representation can be straight-
forwardly applied to higher dimensional systems for later
study. We shall combine the local and nonlocal Majorana
fermion representations to complement each other’s ad-
vantages throughout the paper.
We shall investigate the spin chain in the perspective

of Majorana-SSH model. Note the Hamiltonian HS in
Eq. (24) has the dimerized form of Majorana fermions,
similar to the dimerized form of complex fermions in the
SSH model, therefore is named Majorana-SSH model.
We perform the Fourier transformation of Majorana
fermion operators

γxrµ =

√
2

Nc

∑
k

eikrγxkµ, (25)

where r denotes the unit cell containing two sites from
A and B sublattices, Nc is the number of unit cells, and
µ = A,B. The operators γxkµ in momentum space satisfy(

γxkµ
)†

= γx−kµ, (26){
γxkµ,

(
γxpν

)†}
= δkpδµν . (27)

Therefore γxkµ are complex fermion operators defined in
the half of the Brillouin zone. Nonetheless, it is more con-
venient to duplicate the operators γxkµ in the whole Bril-
louin zone just like the redundant Bogoliubov-de-Gennes
formalism of superconductors. In the momentum space,
the Hamiltonian of the spin chain is

HS =
∑
k

Γ†
kĥS (k) Γk, (28)

ĥS (k) = d⃗k · τ⃗ , (29)

where the imaginary unit i is absorbed into the defini-

tion of the two-component vector Γk =
(
γxkA iγxkB

)T
,
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τα (α = x, y, z) are Pauli matrices acting on the sublat-
tice degrees of freedom, and

dxk = Jx + Jy cos k, (30)

dyk = Jy sin k, (31)

dzk = 0. (32)

Note the momentum space Hamiltonian ĥS (k) has the
same form of the SSH model. With the sublattice chiral
symmetry

τzĥS (k) τz = −ĥS (k) , (33)

the topological invariant characterizing the bulk topology
is the winding number

νγx =
1

2π

∫ π

−π

dk
(
d̂k × d

dk
d̂k · ẑ

)
= − 1

2πi

∫ π

−π

dk
d

dk
ln
(
dxk − idyk

)
= Θ

(
J2
y − J2

x

)
, (34)

where d̂k = d⃗k/
∣∣d⃗k∣∣ is a unit vector, and

Θ (x) =

{
1, x > 0

0, x < 0
(35)

is the step function. Based on the bulk-edge correspon-
dence, the winding number counts the number of zero
modes localized on the edge. For the Majorana-SSH
model, the Majorana fermions tend to pair on the strong
bonds. For

∣∣Jy∣∣ > ∣∣Jx∣∣, one γx Majorana fermion is left
unpaired on the edge. Therefore νγx counts the number
of Majorana zero modes. The winding number indicates
topological phase transitions at Jx = ±Jy. The energy
spectrum of the spin chain is

ϵk = ±
∣∣d⃗k∣∣ = ±

√(
Jx + Jy cos k

)2
+
(
Jy sin k

)2
. (36)

Note the gap also closes at quantum critical points Jx =
±Jy, and is consistent with the results from winding
number. All in all, the Majorana-SSH model has the
same properties as the SSH model except the degrees of
freedom halve.

The spin chain is studied previously by the Jordan-
Wigner transformation and spin dual transformation13.
The topological phase transition is characterized by the
string order parameters. The Majorana-SSH model not
only provides another perspective of the spin chain, but
also paves the way for the study of the spin-charge ladder.

IV. SUPERCONDUCTING WIRE: DECOUPLED
MAJORANA-SSH MODELS

We shall also investigate the superconducting wire in
the Majorana fermion representation. We decompose one

−t𝑥 + ∆𝑥
2

−t𝑥 − ∆𝑥
2

t𝑦 − ∆𝑦
2

t𝑦 + ∆𝑦
2

𝜆𝑗
𝑦

𝜆𝑗
𝑥

𝑐𝑗+1

FIG. 3: The Majorana representation of the superconducting
wire. Each grey circle denotes one charge, and each black
point denotes one Majorana fermion. The superconducting
wire is composed of two decoupled Majorana-SSH models.

complex fermion cj into two Majorana fermions λxj and

λyj as follows

c2j−1 =
1

2

(
λx2j−1 + iλy2j−1

)
, (37)

c2j =
1

2

(
λy2j − iλx2j

)
, (38)

where different conventions on two sublattices are chosen
to obtain the concise form of the Hamiltonian HC . In the
Majorana fermion representation, the Hamiltonian of the
superconducting wire is given by

HC =
∑
j

(−tx +∆x

2
iλx2j−1λ

x
2j +

ty +∆y

2
iλx2jλ

x
2j+1

)
+

∑
j

(−tx −∆x

2
iλy2j−1λ

y
2j +

ty −∆y

2
iλy2jλ

y
2j+1

)
,

(39)

which can be viewed as two decoupled Majorana-SSH
models as shown in FIG. 3.
The properties of the superconducting wire can be ob-

tained straightforwardly from the Majorana-SSH model.
We introduce the total winding number νλ to character-
ize the bulk topology of the superconducting wire, which
is defined as the sum of winding numbers of λx and λy

Majorana fermions

νλ = νλx + νλy , (40)

νλx = Θ
[(
ty +∆y

)2 − (
tx −∆x

)2]
, (41)

νλy = Θ
[(
ty −∆y

)2 − (
tx +∆x

)2]
. (42)

The total winding number counts the number of Majo-
rana zero modes localized on the edge. There are three
different phases classified by the total winding number
and we adopt the terminology in the literature14,15:
(1) νλ = 0, SSH-like trivial phase, no Majorana zero

mode on the edge;
(2) νλ = 1, Kitaev-like topological phase, one Majo-

rana zero mode on the edge;
(3) νλ = 2, SSH-like topological phase, two Majorana

zero modes, i.e. one complex zero mode, on the edge.

The phase boundaries are
(
ty+∆y

)2
=

(
tx−∆x

)2
and(

ty − ∆y

)2
=

(
tx + ∆x

)2
. The energy spectrum of the
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FIG. 4: The Majorana representations of the spin-charge lad-
der. Each white and grey circles denote one spin and one
charge respectively, and each black point denotes one Ma-
jorana fermion. The horizontal dashed lines denote the Z2

gauge field ûj , and vertical dashed lines denote the Z2 bosonic
matter field v̂yj . The circular arrow denotes the Z2 Kondo flux

ϕ̂j in a square plaquette. The black solid lines denote the
Ising coupling, The spin-charge ladder is composed of cou-
pled Majorana-SSH models.

superconducting wire are

εxk = ±1

2

√(
tx −∆x +

(
ty +∆y

)
cos k

)2
+
(
ty +∆y

)2
sin2 k,

(43)

εyk = ±1

2

√(
tx +∆x +

(
ty −∆y

)
cos k

)2
+
(
ty −∆y

)2
sin2 k,

(44)
where the gaps close at the phase boundaries.

V. SPIN-CHARGE LADDER: COUPLED
MAJORANA-SSH MODELS

The Ising-type interaction couples the spin chain and
superconducting wire to form the spin-charge ladder. In
the Majorana fermion representation, the Hamiltonian of
the Ising coupling is

HI = −
∑
j

Kiγxj λ
x
j iγ

y
j λ

y
j = −

∑
j

Kv̂xj v̂
y
j , (45)

where the anticommutativity of γ and λ Majorana
fermions is discussed in the Appendix A and

v̂αj = iγαj λ
α
j . (46)

The operators v̂αj (α = x, y) satisfy
(
v̂αj

)2
= 1, and have

Z2 eigenvalues vαj = ±1. The spin-charge ladder can
be viewed as coupled Majorana-SSH models as shown in
FIG. 4. In the following, we’ll derive the exact solution of
the spin-charge ladder in the flat band limit, and study
the Z2 order fractionalization, topological phase transi-
tion, and odd frequency pairing therein.

A. exact solution

The spin-charge ladder is exactly solvable when the
parameters satisfy

tx +∆x = ty −∆y = 0, (47)

or

tx −∆x = ty +∆y = 0. (48)

According to Eq. (43) and (44), the above conditions
correspond to one of the energy spectrum of the super-
conducting wire becomes complete flat. Without loss of
generality, we focus on the flat band limit tx + ∆x =
ty −∆y = 0, and the exactly solvable Hamiltonian in the
Majorana fermion representation is

HE =
∑
j

(
Jxû2j−1iγ

x
2j−1γ

x
2j − Jyû2jiγ

x
2jγ

x
2j+1

)
+
∑
j

(
∆xiλ

x
2j−1λ

x
2j +∆yiλ

x
2jλ

x
2j+1

)
−
∑
j

Kv̂yj iγ
x
j λ

x
j . (49)

Under local Z2 gauge transformation, the operators
transform as

γxj → Λjγ
x
j , (50)

v̂yj → Λj v̂
y
j , (51)

ûj → Λj ûjΛj+1, (52)

the exactly solvable Hamiltonian HE has the local Z2

gauge symmetry, and can be viewed as a lattice gauge
theory that γxj and v̂yj are emergent Z2 fermionic and
bosonic matter fields with Z2 gauge charges, and ûj are
emergent Z2 gauge field. Since[

H, ûj
]
= 0, (53)[

HE , v̂
y
j

]
= 0, (54)

ûj and v̂yj are constants of motion in the flat band limit.
As [

ûj , ûl
]
= 0, (55)[

v̂yj , v̂
y
l

]
= 0, (56)[

ûj , v̂
y
l

]
= 0, (57)

all ûj and v̂yj constitute a set of good quantum numbers.

We can divide total Hilbert space into sectors {u, vy}
characterized by the eigenvalues of all good quantum
numbers. In each sector, the exactly solvable Hamilto-
nian describes free Majorana fermions coupled to static
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Z2 bosonic matter and gauge fields

HE ({u, vy}) =
∑
j

(
Jxu2j−1iγ

x
2j−1γ

x
2j − Jyu2jiγ

x
2jγ

x
2j+1

)
+
∑
j

(
∆xiλ

x
2j−1λ

x
2j +∆yiλ

x
2jλ

x
2j+1

)
−
∑
j

Kvyj iγ
x
j λ

x
j , (58)

and such quadratic Hamiltonian is exactly solvable. In
each sector, the ground state is obtained by diagonal-
izing the quadratic Hamiltonian HE ({u, vy}) and fill-
ing all negative energy levels. The ground state energy
E0 ({u, vy}) is a functional of {u, vy}. The ground state
sector is determined by minimizing E0 ({u, vy}).
To determine the ground state sector, we first consider

the strong coupling limit |K| ≫ |Jx,y| , |∆x,y|. In term
of the exactly solvable Hamiltonian, there are four local
states ∣∣vyj = ±1, iγxj λ

x
j = ±1

〉
. (59)

In the strong coupling limit, the Ising coupling splits four
local states into two high-energy states∣∣vyj sgn (K) = −iγxj λxj = ±1

〉
, (60)

and two low-energy states∣∣vyj sgn (K) = iγxj λ
x
j = ±1

〉
. (61)

We can derive the effective Hamiltonian in the 2N -
dimensional low-energy subspace by treating the spin
chain and superconducting wire as perturbations, where
N is the number of total sites. To the leading order, the
effective Hamiltonian is given by

Heff =
1

2 |K|
∑
j

(
∆xJxϕ̂2j−1 −∆yJyϕ̂2j

)
, (62)

where

ϕ̂j = v̂yj ûj v̂
y
j+1 (63)

is a gauge invariant Z2 Kondo flux operator7. By the in-
verse Jordan-Wigner transformation, the Z2 Kondo flux
operators in terms of spin and charge degrees of freedom
are given by

ϕ̂2j−1 = −σy
2j−1σ

y
2jiλ

y
2j−1λ

y
2j , (64)

ϕ̂2j = σx
2jσ

x
2j+1iλ

y
2jλ

y
2j+1, (65)

where two spin operators and two charge operators form a
Kondo flux in a square plaquette as shown in FIG. 4. By

definition, the operators ϕ̂j have Z2 eigenvalues ϕj = ±1,
and are constants of motion in the flat band limit. The
form of the effective Hamiltonian manifests the ground
state energy is actually a functional of gauge invariant

quantities {ϕ} as it must be. Thus the ground state sec-
tor is determined by minimizing E0

(
{ϕ}

)
. In the strong

coupling limit, the ground state sector is determined by
the relations

sgn
(
∆xJx

)
ϕ̂2j−1 = −1, (66)

−sgn
(
∆yJy

)
ϕ̂2j = −1, (67)

which results are consistent with the Lieb’s theorem16.
By absorbing the signs of the parameters into the flux
operators as defined by Lieb, the ground state sector of
the flux phase of half-filled band is π-flux for each square
plaquette.

For generic parameters, we have to resort to numerical
calculations to find the ground state sector. As the num-
bers of uj and vyj are both N , we need to traverse all the

22N sectors and find the sector with lowest ground state
energy. The numerical results on small lattice size not
only confirm the results in the strong coupling limit, but
also indicate that the relations are valid for generic pa-
rameters. As a physical quantity, the ground state energy
only depends on the gauge invariant quantities {ϕ}. The
number of different choices of uj and vyj corresponding

to each flux sector {ϕ} is 2N+1, where N comes from the
number of local Z2 gauge transformations and 1 comes
from the global Z2 transformation vyj → −vyj . Therefore,
each state is 2N+1-fold degenerate.

B. Z2 order fractionalization

The global Z2 transformation related two-fold degen-
eracy of the ground states indicates the global Z2 symme-
try breaking of the spin-charge ladder. The Z2 bosonic
matter field v̂αj can serve as the order parameter. In the
Kitaev-Kondo model, the SU (2) spin symmetric Kondo
coupling allows the Majorana spinon and electron to form
a bound state, and the composite bosonic spinor inherits
the fractional quantum numbers of spinon and electron.
The condensation of the spin 1

2 and charge e bosonic

spinor renders into the fractionalized order7. The Ising
coupling of the spin-charge ladder in Eq. (45) tends to
form the bound state of Majorana spinon and charge, and
the composite bosonic scalar inherits the fractional quan-
tum numbers spin 1

2 and Z2 charge. The condensation
of the bosonic scalar renders into Z2 order fractionaliza-
tion. From the inverse Jordan-Wigner transformation,
the order parameters of the Z2 order fractionalization in
terms of spin degrees of freedom are essentially string
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order parameters

v̂x2j−1 = iγx2j−1λ
x
2j−1

= iσy
2j−1

( ∏
l<2j−1

σz
l

)
λx2j−1, (68)

v̂y2j−1 = iγy2j−1λ
y
2j−1

= iσx
2j−1

( ∏
l<2j−1

σz
l

)
λy2j−1, (69)

v̂x2j = iγx2jλ
x
2j

= −iσx
2j

(∏
l<2j

σz
l

)
λx2j , (70)

v̂y2j = iγy2jλ
y
2j

= iσy
2j

(∏
l<2j

σz
l

)
λy2j . (71)

The order parameters transform nontrivially under the
Z2 total spin parity

Zs
2 =

∏
j

σz
j =

∏
j

iγxj γ
y
j , (72)

and the Z2 total charge number parity

Zc
2 =

(
−1

)∑
j nj

=
∏
j

(
−iλxjλ

y
j

)
, (73)

as follows

Zs
2 v̂

α
j Z

s
2 = −v̂αj , (74)

Zc
2 v̂

α
j Z

c
2 = −v̂αj . (75)

The spin parity is defined as even (odd) for spin up
(down). The condensation of the bosonic scalar breaks
both the Z2 total spin and charge number parity sym-
metries. In particular, the exactly solvable Hamiltonian
Eq. (49) in the axial gauge has the spin-charge duality

γxj ↔ λxj , (76)

γyj ↔ −λyj , (77)

Jx ↔ ∆x, (78)

Jy ↔ −∆y, (79)

and the two Z2 parity symmetries interchange

Zs
2 ↔ Zc

2. (80)

Alternatively, we can introduce the other equivalent or-
der parameters

Ôj,± =
1

2

(
v̂xj ± v̂yj

)
, (81)

and the Ising coupling can be rewritten as

HI = −
∑
j

K
(
2Ô2

j,+ − 1
)

= −
∑
j

K
(
1− 2Ô2

j,−

)
= −

∑
j

K
(
Ô2

j,+ − Ô2
j,−

)
, (82)

which form indicates positive K favors Ôj,+ while nega-

tive K favors Ôj,− to lower the energy.

We can calculate the expectation values of the order
parameters analytically with the help of the exact solu-
tion. We define the complex f -fermions

f2j−1 =
1

2

(
λx2j−1 + iγx2j−1

)
, (83)

f2j =
1

2

(
γx2j − iλx2j

)
, (84)

and the exactly solvable Hamiltonian in the complex f -
fermion representation is

HE =
∑
j

[(
−∆x − Jxû2j−1

)
f†2j−1f2j +

(
∆y − Jyû2j−1

)
f†2jf2j+1 + h.c.

]
+
∑
j

[(
∆x − Jxû2j−1

)
f†2j−1f

†
2j +

(
∆y + Jyû2j−1

)
f†2jf

†
2j+1 + h.c.

]
+
∑
j

Kv̂yj
(
f†j fj − fjf

†
j

)
. (85)

In the ground state sectors, Z2 Kondo fluxes are uniform

ϕ̂2j−1 = ϕA, (86)

ϕ̂2j = ϕB , (87)

and satisfy the relations

sgn (∆xJx)ϕA = −1, (88)

−sgn (∆yJy)ϕB = −1. (89)
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We take the gauge

v̂y2j−1 = vA = v, (90)

v̂y2j = vB = v, (91)

then in the ground state sectors we have

û2j−1 = uA = ϕA, (92)

û2j = uB = ϕB . (93)

We perform the Fourier transformation of complex f -
fermion operators

frµ =
1√
Nc

∑
k

eikrfkµ, (94)

the exactly solvable Hamiltonian in momentum space is

HE ({ϕA, ϕB}) =
∑
k

Φ†
kĥE (k) Φk, (95)

ĥE (k) =

 Kv zk 0 wk

z∗k Kv −w∗
k 0

0 −wk −Kv −zk
w∗

k 0 −z∗k −Kv

 , (96)

where the four-component vector of complex f -fermion

is Φk =
(
fkA fkB f†−kA f†−kB

)T
, and the matrix ele-

ments of ĥE (k) are

zk =
1

2

[(
−∆x − JxuA

)
+
(
∆y − JyuB

)
e−ik

]
, (97)

wk =
1

2

[(
∆x − JxuA

)
−
(
∆y + JyuB

)
e−ik

]
. (98)

To obtain concise analytical results, we consider the limit

Jx = −Jy = J, (99)

∆x = ∆y = ∆, (100)

and expectation values of the order parameters are given
by

O± =
〈
Ôj,±

〉
=
v

2

( 1

Nc

∑
k

K√(
Ju−∆

)2
sin2 k +K2

± 1
)
, (101)

where

uA = uB = u = −sgn
(
J∆

)
, (102)

and the calculation details are given in the Appendix B.
From the analytical expression Eq. (101), the two order
parameters both have nonzero expectation values and co-
exist with each other as they break both the Z2 total spin
and charge number parity symmetries. Meanwhile, the
magnitudes of two order parameters compete with each
other as positive (negative) K favors Ôj,+ (Ôj,−). The
intertwined order parameters coexist and compete with
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FIG. 5: (Color online) The magnitudes of order parameters
O+ (red) and O− (blue) vs. K/J . The parameters are −Jx =
Jy = ∆x = ∆y = −J . The singular point at K = 0 is due
to the macroscopic degeneracy. The two order parameters
coexist and compete with each other.

each other in the spin-charge ladder as shown in FIG. 5
may provide essential insight into the Z2 order fraction-
alization. The singular point at K = 0 in FIG. 5 is due
to the 2N -fold degeneracy, i.e. macroscopic degeneracy,
caused by the absence of N operators v̂yj ’s in the exact
solvable Hamiltonian. We emphasize that the coexistence
of two order parameters must take count of the fluctua-
tions beyond the mean-field theory as different forms of
Ising coupling in Eq. (82) imply the mean-field theory
tends to one nonzero order parameter to lower the en-
ergy. Certainly the exact solution has taken count of all
fluctuations.

From the perspective of the lattice gauge theory, the
Z2 order fractionalization can be viewed as the Z2 Higgs
phase in the sense that Z2 bosonic matter field has spon-
taneous Z2 symmetry breaking and Z2 gauge field is
massive17. However, the exactly solvable Hamiltonian
in Eq. (49) indicates the bosonic matter field and gauge
field are coupled by integrating the fermionic matter field.
Therefore the fermionic excitations are also one of char-
acteristics of the Z2 order fractionalization.

C. topological phase transition

We shall study the low-energy fermionic excitations
and the quantum phase transitions in the spin-charge

ladder. By diagonalizing the matrix ĥE (k), the energy
spectrum of fermionic excitations in the ground state sec-
tors is

(
E±

k

)2
= K2+

∣∣zk∣∣2+∣∣wk

∣∣2±√∣∣2Kzk∣∣2 + (
zkw∗

k + z∗kwk

)2
.

(103)
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At k = 0, π, we have zk = z∗k, wk = w∗
k, and the energy

spectrum simplifies to(
E±

k=0,π

)2
=

(√
K2 + w2

k=0,π ±
√
z2k=0,π

)2
. (104)

E+
k is always gapped, and the gapless conditions of E−

k
are

K2 + w2
k=0,π = z2k=0,π, (105)

or equivalently(
K2 −∆xJxuA +∆yJyuB

)2
=

(
∆xJyuB −∆yJxuA

)2
,

(106)
which indicate quantum phase transitions at the gapless
points.

To explore the nature of the quantum phase transi-
tions, we focus on the low-energy physics of the spin-
charge ladder, which is captured by the exactly solvable
Hamiltonian in the ground state sectorsHE ({ϕA, ϕB}) in
Eq. (95). As the Ising coupling effectively acts as a chem-
ical potential, the HamiltonianHE ({ϕA, ϕB}) breaks the
sublattice chiral symmetry

τzĥE (k) τz ̸= −ĥE (k) , (107)

nonetheless the Hamiltonian HE ({ϕA, ϕB}) has another
particle-hole chiral symmetry

ρxĥE (k) ρx = −ĥE (k) , (108)

where ρα
(
α = x, y, z

)
are Pauli matrices acting on the

particle-hole degrees of freedom, and the above symme-
tries are defined in terms of complex f -fermions. With
particle-hole chiral symmetry, we can define the spectral
chiral index of complex f -fermions in the ground states
as a topological invariant of the spin-charge ladder

CE =
1

4πi
Tr

∫ π

−π

dkρxĝ−1
E (k) ∂kĝE (k) , (109)

where ĝE (k) = −ĥ−1
E (k) is the Green’s function at zero

frequency18–21. The spectral chiral index CE is given by∣∣CE

∣∣ = Θ
[(
∆xJyuB−∆yJxuA

)2−(
K2−∆xJxuA+∆yJyuB

)2]
,

(110)
and the calculation details are given in the Appendix C.
There are two phases classified by the absolute value of
the spectral chiral index:

(1) |CE | = 0, SSH-like phase, no robust Majorana zero
mode on the edge;

(2) |CE | = 1, Kitaev-like phase, one robust Majorana
zero mode on the edge.

The phase boundaries determined by the spectral chi-
ral index in Eq. (110) are consistent with the gapless con-
ditions of the energy spectrum in Eq. (106). The absolute
value of the spectral chiral index counts the number of
robust Majorana zero modes localized on the edge. In the

FIG. 6: Dyson’s equation of the propagator GC (thick solid
line) of the charge degrees of freedom. G0

C (thin solid line)
and G0

S (thin dashed line) are the bare propagators of the
superconducting wire and spin chain respectively, and Vk is
the vertex hybridizing charge and spin degrees of freedom due
to Ising coupling.

Majorana-SSH model, the Majorana zero modes are frag-
ile in the sense of protected by the sublattice chiral sym-
metry, and away from half-filling the chemical potential
term will break the sublattice chiral symmetry and cou-
ple two Majorana-SSH models then split the Majorana
zero modes. However, as shown in FIG. 4, the low-energy
physics of the spin-charge ladder in the flat-band limit is
captured by the dimerized Kitaev-chain. Therefore the
Majorana zero modes are robust in the Kitaev-like phase,
just as in the Kitaev-chain.
The topological phase transition of the spin-charge lad-

der has a physical picture in real space in the perspective
of coupled Majorana-SSH models. In the ground state
sectors, we have the relations Eq. (88) and (92), and the
gapless conditions simplify to

K2 = (|∆x| − |∆y|) (|Jy| − |Jx|) . (111)

In the weak coupling limit |K| ≪ |Jx,y| , |∆x,y|, the
conditions for the Kitaev-like topological superconduc-
tor (TSC) phase are |∆x| ≶ |∆y| and |Jy| ≶ |Jx|, which
means one of the coupled Majorana-SSH models is in
the topological phase, meanwhile another is in the triv-
ial phase, and Majorana fermions tend to pair on the
strong bonds within their own Majorana-SSH models,
i.e. the horizontal solid lines in FIG. 4. Eventually one
Majorana zero mode is left unpaired on the edge. In
the strong coupling limit |K| ≫ |Jx,y| , |∆x,y|, Majorana
fermions tend to pair between the Majorana-SSH models,
i.e. the vertical solid lines in FIG. 4, and no Majorana
zero mode is left unpaired on the edge. However we em-
phasize the Kitaev-like TSC phase is not adiabatically
connected to the topological phase of the non-interacting
Kitaev chain. Not only the low-energy physics contains
Majorana fermions from spin-chain and superconducting
wire, but also there exist gapped excitations of Z2 Kondo
flux. The Z2 Kondo flux excitation is similiar to the vi-
son in the Z2 gauge theory of electron fractionalization5,
and the Kitaev-like TSC phase is denoted as TSC*.

D. odd frequency pairing

We shall investigate the effect of the spin chain on
the pairing properties of the superconducting wire due
to the Ising coupling. We focus on the flat band limit in
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Eq. (47), and the momentum space Hamiltonian of the
superconducting wire in the complex c-fermion represen-
tation is

HC =
∑
k

Ψ†
kĥC (k)Ψk, (112)

ĥC (k) =

 0 gk 0 −gk
g∗k 0 g∗k 0
0 gk 0 −gk

−g∗k 0 −g∗k 0

 , (113)

where the four-component vector of complex c-fermion

is Ψk =
(
ckA ckB c†−kA c†−kB

)T
, and the matrix ele-

ments of ĥC (k) are

gk =
1

2

(
−∆x +∆ye

−ik
)
. (114)

The inverse bare propagator of the superconducting wire
is (

G0
C

)−1(
k, ω

)
=ω − ĥC

(
k
)

=ω − ρz
(
gxkτ

x + gykτ
y
)
− ρy

(
−gykτ

x + gxkτ
y
)
, (115)

where terms proportional to ρz and ρy come from hop-
ping and pairing parts respectively, and

gxk =
1

2
(−∆x +∆y cos k) , (116)

gyk =
1

2
∆y sin k. (117)

Similarly, the inverse bare propagator of the spin chain
is (

G0
S

)−1(
k, ω

)
= ω − ĥS

(
k
)

= ω − dxkτ
x − dykτ

y. (118)

We focus on the low-energy physics of the spin-charge
ladder and work within the ground state sectors. The
exactly solvable Hamiltonian in the ground state sectors
can be written as

HE =
∑
k

(
Ψ†

k Γ†
k

)( ĥC (k) Vk
V †
k ĥS (k)

)(
Ψk

Γk

)
, (119)

where Vk is the hybridization matrix between the four-
component vector Ψk and two-component vector Γk due
to Ising coupling

Vk =
iK√
2

 vA 0
0 −vB
vA 0
0 vB

 . (120)

For the spin-charge coupled system, we can integrate the
spin degrees of freedom and obtain the effective action
of the charge degrees of freedom, or equivalently we can

obtain the propagator of the charge degrees of freedom
from the Dyson’s equation as shown in FIG. 6

GC = G0
C +G0

CΣCGC , (121)

where ΣC is the self-energy and can be divided into nor-
mal and pairing parts

ΣC (k, ω) = VkG
0
S (k, ω)V †

k

= ΣN
C (k, ω) + ΣSC

C (k, ω) . (122)

The straightforward calculations give

ΣN
C (k, ω) =

K2

2

ω − vAvBρ
z
(
dxkτ

x + dykτ
y
)

ω2 −
(
dxk

)2 − (
dyk

)2 , (123)

ΣSC
C (k, ω) =− K2

2

vAvBρ
y
(
−dykτx + dxkτ

y
)

ω2 −
(
dxk

)2 − (
dyk

)2
+
K2

2

ωρxτz

ω2 −
(
dxk

)2 − (
dyk

)2 . (124)

From the Dyson’s equation

G−1
C =

(
G0

C

)−1 − ΣC , (125)

and compare with the inverse bare propagator in
Eq. (115), besides some corrections to the hopping and
pairing parts, the Ising coupling generates a new term

Σodd
C (k, ω) = −Σodd

C (k,−ω)

=
K2

2

ωρxτz

ω2 −
(
dxk

)2 − (
dyk

)2 , (126)

which describes odd frequency, even parity, onsite pair-
ing. A careful look at the origin of the odd frequency
pairing, the essential ingredient is the fermionic propa-
gator G0

S of the spin chain. Such an odd frequency pair-
ing can’t be generated in electron-phonon or electron-
magnon coupled systems as the propagators of phonon
or magnon are bosonic and even in frequency. The Ma-
jorana fractionalization of the spins in spin-electron cou-
pled systems provides a general mechanism for odd fre-
quency pairing22–25.

VI. DISCUSSION

In summary, we study a spin-charge ladder model and
discover the exact solution at the flat band limit. With
the help of the exact solution, we explore the Z2 or-
der fractionalization with bosonic scalar order parame-
ters. The order parameters compose of Majorana spinon
and charge with fractional quantum numbers spin 1

2 and
Z2 charge, and are essentially string order parameters.
In the Z2 order fractionalized phase, two dual Z2 sym-
metries break spontaneously that lead to the two inter-
twined order parameters coexisting and competing with
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each other. The low-energy fermionic excitations in the
Z2 order fractionalized phase are gapped except at the
critical points, where the spin-charge ladder undergoes
a topological phase transition characterized by the spec-
tral chiral index. The topological phase is denoted as
TSC* to emphasize the correlated nature with gapped
Z2 Kondo flux excitation. The Majorana fractionaliza-
tion of the spins, i.e. Majorana spinons in the spin chain,
effectively generates odd frequency pairing in the super-
conducting wire. The exact solution describes a lattice
gauge theory that Z2 fermionic and bosonic matter fields
coupled with Z2 gauge field, and Z2 order fractionaliza-
tion is a Z2 Higgs phase that Z2 bosonic matter field has
spontaneous Z2 symmetry breaking and Z2 gauge field
is massive. Combined with the pioneering works7,9, such
a concrete and exact study lays the foundation for the
future research about order fractionalization.

In the main text, we focus on the exact solution and
derive exact results about order fractionalization in the
spin-charge ladder. Away from the flat band limit, λy

Majorana fermions become itinerant, and operators v̂yj
are no longer constants of motion and Z2 bosonic matter
field acquires fluctuations and becomes dynamic. With
increasing fluctuations, a phase transition belonging to
the 1 + 1-D Ising universality class is presumed as the
Z2 characteristic of the fluctuating bosonic scalar. More
interestingly, the Ising coupling is tuned close to the crit-
ical points and the low-energy fermionic exciations are
Dirac fermions, then along the critical points, the cou-
pling of fluctuating bosonic scalar and Dirac fermions
may generate novel quantum criticality26. The state-of-
the-art DMRG provides a powerful method to the future
systematic study of the whole phase diagram of the spin-
charge ladder.

The order fractionalization provides a new mechanism
of unconventional superconductivity. The key is the Ma-
jorana fractionalization of spins. For electron-spin cou-
pled systems, spins form the intermediary spin liquid
state with Majornana spinons. Then the Kondo coupling
leads to the order fractionalization that breaks electron’s
global U (1) symmetry. The electron superconductivity
inherits from Majorana spinons27, such as the topological
superconductivity28, Odd-frequency pair density wave29,
and spin-triplet pairing in the Kitaev-Kondo model7. As
the amplitude of the effective odd frequency pairing is
hugely enhanced with zero energy bound state and is in-
versely proportional to ω30–32, the TSC* phase in the
spin-charge ladder with Majorana zero mode is possibly
detected in a Josephson junction setup33,34.
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Appendix A: Anticommutativity of γ and λ
Majorana fermions

It is presumed that the γ Majorana fermions of the
spin chain and the λ Majorana fermions of the supercon-
ducting wire anticommute. The inverse Jordan-Wigner
transformation indicates γ Majorana fermions are spin
string operators

γx2j−1 = σy
2j−1

∏
l<2j−1

σz
l , (A1)

γy2j−1 = σx
2j−1

∏
l<2j−1

σz
l , (A2)

γx2j = −σx
2j

∏
l<2j

σz
l , (A3)

γy2j = σy
2j

∏
l<2j

σz
l , (A4)

and the spin operators certainly commute with the λMa-
jorana fermions [

σα
j , λ

β
l

]
= 0, (A5)

thus γ and λ Majorana fermions actually commute with
each other [

γαj , λ
β
l

]
= 0. (A6)

In consideration of spin and charge degrees of freedom are
coupled, we introduce a new set of λ̃ Majorana fermions

λ̃αj = λαj Z
s
2 , (A7)

where

Zs
2 =

∏
j

σz
j =

∏
j

iγxj γ
y
j , (A8)

is the spin parity. As{
γαj , Z

s
2

}
= 0, (A9)

γ and λ̃Majorana fermions anticommute with each other{
γαj , λ̃

β
l

}
= 0. (A10)

In the main text, we still use the notation λ instead of
λ̃ for simplicity, and assume γ and λ Majorana fermions
anticommute with each other if no ambiguities.
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Appendix B: Expectation values of order parameters

We shall calculate the expectation values of order pa-
rameters in the Majorana fermion representation. In the
limit

Jx = −Jy = J, (B1)

∆x = ∆y = ∆, (B2)

the exactly solvable Hamiltonian in the ground state sec-
tors is

HE ({ϕ}) =
∑
j

(
Juiγxj γ

x
j+1 +∆iλxjλ

x
j+1 −Kviγxj λ

x
j

)
,

(B3)
We perform the Fourier transformation

γxj =

√
2

N

∑
q

eiqjγxq , (B4)

λxj =

√
2

N

∑
q

eiqjλxq , (B5)

and the exactly solvable Hamiltonian in momentum space
is

HE ({ϕ})

=
∑
q

(
γx−q λx−q

)( −2Ju sin q −Kvi
Kvi −2∆ sin q

)(
γxq
λxq

)
,

(B6)

To diagonalize the exactly solvable Hamiltonian, we per-
form the unitary transformation(

γxq
λxq

)
=

(
u∗q vq
−v∗q uq

)(
η+q
η−q

)
, (B7)

where

uq =
hq + hzq√

2hq
(
hq + hzq

) = u∗q , (B8)

vq =
ihyq√

2hq
(
hq + hzq

) = −v∗q , (B9)

and

hyq = Kv, (B10)

hzq = − (Ju−∆) sin k, (B11)

hq =

√
(Ju−∆)

2
sin2 k +K2, (B12)

The expectation value of v̂xj is

〈
v̂xj

〉
=

2

N

∑
q

−ivquq =
1

N

∑
q

Kv

hq
, (B13)

and the expectation values of order parameters are

O± =
〈
Ôj,±

〉
=
1

2

(〈
v̂j,x

〉
±

〈
v̂j,y

〉)
=
v

2

( 1

N

∑
q

K

hq
± 1

)
. (B14)

Appendix C: Spectral chiral index

We shall calculate the spectral chiral index of the com-
plex f -fermions. To work in the diagonal basis of particle-
hole chiral symmetry operator, we perform a unitary
transformation

UρxU† = ρz, (C1)

UĥE (k)U† =

(
0 VE (k)

V †
E (k) 0

)
(C2)

where

U =
1√
2

 1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

 , (C3)

and

VE (k) =

(
iKv i (zk − wk)

i (z∗k + w∗
k) iKv

)
. (C4)

The spectral chiral index is

CE =
1

4πi
Tr

∫ π

−π

dk

(
1 0
0 −1

)(
0 −VE (k)

−V †
E (k) 0

)
× ∂k

(
0 −V †−1

E (k)
−V −1

E (k) 0

)
=

1

4πi
Tr

∫ π

−π

dk
(
V †−1
E (k) ∂kV

†
E (k)− V −1

E (k) ∂kVE (k)
)

= − 1

2πi
Tr

∫ π

−π

dk∂k lnVE (k)

= − 1

2πi

∫ π

−π

dk∂k ln detVE (k) , (C5)

where

detVE (k) =−K2 + (zk − wk) (z
∗
k + w∗

k)

=−K2 + (∆xJxuA −∆yJyuB)

+ (∆xJyuB −∆yJxuA) cos k

+ i (∆xJyuB +∆yJxuA) sin k, (C6)

The spectral chiral index CE is the winding number of
detVE (k), and is determined by the cross points of the
real axis at k = 0 and k = π

|CE | =

{
1, detVE (0) detVE (π) < 0

0, detVE (0) detVE (π) > 0
(C7)
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Note the spectral chiral index depends on the signs of
the pairing potentials, which is a matter of global phase
choice. As

detVE (0) detVE (π)

=
(
K2 −∆xJxuA +∆yJyuB

)2 − (
∆xJyuB −∆yJxuA

)2
,

(C8)

the spectral chiral index is given by

∣∣CE

∣∣ = Θ
[(
∆xJyuB−∆yJxuA

)2−(
K2−∆xJxuA+∆yJyuB

)2]
.

(C9)
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