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This study introduces a method for simulating quantum systems using electrical networks.
Our approach leverages a generalized similarity transformation, which connects different
Hamiltonians, enabling well-defined paths for quantum system simulation using classical
circuits. By synthesizing interaction networks, we accurately simulate quantum systems of
varying complexity, from 2−state to n−state systems. Unlike quantum computers, classical
approaches do not require stringent conditions, making them more accessible for practi-
cal implementation. Our reinterpretation of Born’s rule in the context of electrical circuit
simulations offers a perspective on quantum phenomena.

I. INTRODUCTION

Recently, a procedure was established for
connecting two quantum systems within a
finite-dimensional Hilbert space through lo-
cal transformations [1]. This correspondence
provides a valuable tool for mapping quan-
tum systems, enabling the study of one system
through the lens of the other. This allows us
to state that quantum systems described using
finite-dimensional Hilbert spaces are, in prin-
ciple, intersimulatable. By this, it is meant
that it has been proven that there exists a
transformation linking one to the other.

The dynamics of such quantum systems are
governed by the Schrödinger equation, and a
general recipe for constructing a classical elec-
trical network capable of finding a solution of
the Schrödinger equation from certain electri-
cal signals has been described. The intention
in this paper is to show how this can be done.

A productive and promising application for
these ideas lies in the field of quantum simu-
lations. Quantum simulators are controllable
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systems designed to emulate the static or dy-
namic properties of other quantum systems
[3]. By establishing a gauge transformation,
a connection between any two quantum sys-
tems residing in respective finite-dimensional
Hilbert spaces can be established. In our
work, the topic of quantum simulation was
approached from an alternative perspective,
starting with a more familiar scenario where
the latter can be analytically solvable and/or
simulatable. The first part of the approach
is described in [2]. However, in this work,
it will be shown that the time evolution, a
la Schrödinger, of such quantum systems can
be realized by a classical electrical network as
an analog simulator. One approach to realize
simulations of these equivalent quantum sys-
tems is through classical electrical networks.
A classical system will be constructed in which
certain dynamic quantities (voltages or cur-
rents) will evolve in time as does the wave
function of a given quantum system, on a
Hilbert space of finite dimension. This con-
stitutes what is called an analog simulation of
such systems.

There is a wide range of references to pre-
vious work in the field of classical simulata-
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bility of quantum systems [4–6]. In all these
cases, the intention is to simulate quantum
gates in terms of optical devices. However,
in this work, the aim is to make a classical
simulation of the time evolution of a quantum
system using electrical circuits.

A detailed and generalized description of
the ideas proposed in [7, 8] for simulating
quantum systems using specific circuits is pro-
vided. It is demonstrated that classical sys-
tems, which possess a simpler controllability
compared to general quantum systems, can be
utilized to accurately capture their temporal
evolution. By leveraging this equivalence be-
tween quantum systems, the feasibility of im-
plementing a comprehensive simulation proto-
col using classical circuits is established.

II. QUANTUM SYSTEMS ON A
FINITE DIMENSIONAL HILBERT

SPACE

A brief introduction to the fundamental el-
ements of quantum systems is provided. Con-
sider a general quantum system Q, which
can be described in an n-dimensional Hilbert
space. The deterministic temporal evolu-
tion of the quantum system is governed by a
Hamiltonian operator H, which may be time-
dependent. This operator acts on the vector
state |ψ(t)⟩ at time t∈ T⊆R, as dictated by
the Schrödinger equation i∂t|ψ(t)⟩=H|ψ(t)⟩,
where ∂t denotes the partial derivative with
respect to time and natural units, such as
ℏ = 1, are employed. It is worth noting
that a partial time derivative is used be-
cause |ψ(t)⟩ may depend on other quanti-
ties. Alternatively, the Schrödinger equation
can be expressed in terms of a particular ba-
sis βββ={|βk⟩}k∈Jn

as ψk(t):=⟨βk|ψ(t)⟩, where
k∈Jn={1, · · · , n}⊂N. The bra-ket notation is

utilized to represent the inner product [9], en-
abling the expression of the Schrödinger equa-
tion in terms of elements of Cn, denoted as
ψψψ=(ψ1, · · · , ψk, · · · , ψn)t. Note that all vec-
tors presented in this work are of column type,
the superscript t is used for matrix transposi-
tion, but for simplicity in notation, the nota-
tion is kept simple.

The complex vector−curve ψψψ satisfies an-
other version of the Scrhödinger equation,
given by

iψ̇̇ψ̇ψ(t) = HψHψHψ(t), (1)

where ψ̇̇ψ̇ψ denote the time derivative of ψψψ(t) and
HHH∈Cn×n is a complex matrix that represents
the hamiltonian operator H in the basis βββ and
whose matrix elements are Hkl=⟨βk|H|βl⟩.
The hamiltonian operator is referred to as the
hamiltonian matrix.

III. CLASSICAL SYSTEMS
EQUIVALENTS TO QUANTUM

SYSTEMS

In prior studies, Rosner [10] presented a
compelling parallel between a specific quan-
tum system and a classical system comprising
electrical oscillators. This proposal was sub-
sequently formalized and empirically demon-
strated in [7, 8]. The purpose of this pa-
per is to extend and generalize this formaliza-
tion, encompassing quantum systems defined
on any finite-dimensional Hilbert space.

Without loss of generality, a time-
independent and self-adjoint Hamiltonian op-
erator can be considered, represented by a con-
stant Hermitian matrix HHH.

Let us begin by expressing (1) using the
decomplexification procedure, commonly re-
ferred to as realification, introduced by Arnold
[11, 12]. This procedure involves mapping the



complex space Cn onto the real space R2n us-
ing the linear operator D:Cn−→R2n. Note
that D is a linear operator and take a vec-
tor in Cn and return a vector in R2n formed
by the juxtaposition of the real and imagi-
nary part of this vector, explicitly defined as
D(ψψψ):=(((Re(ψψψ), Im(ψψψ)))).

The equation (1) take the form of two sep-
arate equation for real and imaginary part of
ψψψ, denoted by φφφ1 = Re(ψψψ) and φφφ2 = Im(ψψψ)

φ̇̇φ̇φ1 = HHH2φφφ1 +HHH1φφφ2 (2)

φ̇̇φ̇φ2 = HHH2φφφ2 −HHH1φφφ1, (3)

where HHH1=Re(HHH) and HHH2=Im(HHH), also the
dots notations refers to time derivative. Note
that the above equations can be obtained ac-
cording to

D(HψHψHψ)=(((HHH1φφφ1−HHH2φφφ2,HHH2φφφ1+HHH1φφφ2))) (4)

in particular D(iψψψ)=(−φφφ2 ,φφφ1).
The previous system of equations is decou-

pled by deriving both expressions.

φ̈̈φ̈φ1 = HHH2 φ̇̇φ̇φ1 +HHH1 φ̇̇φ̇φ2 (5)

φ̈̈φ̈φ2 = HHH2 φ̇̇φ̇φ2 −HHH1 φ̇̇φ̇φ1, (6)

clearing φ̇̇φ̇φ2 from (3) and φφφ2 form (2) and re-
place them in expression (5) and the speculate
proceeding solving φ̇̇φ̇φ1 from (2) andφφφ1 form (3)
and replace them in expression (6), to obtain

φ̈̈φ̈φl(t) +AAAq φ̇̇φ̇φl(t) +BBBqφφφl(t) = 000, (7)

where l = 1, 2 and the real matrices (AAAq,BBBq)
are given by AAAq= − HHH2 − HHH1HHH2HHH

−1
1 and

BBBq=HHH2
1+HHH1HHH2HHH

−1
1 HHH2, the sub index q refers

to the fact that such matrices (AAAq,BBBq) encode
the hamiltonian of the quantum system [8].

Dealing with a self-adjoint Hamiltonian op-
erator, such as in closed quantum systems, it
also follows that the matrix HHH is normal, i.e.,

[HHH,HHH†] = 0. Consequently, HHH1 and HHH2 com-
mute, implying that matrices AAAq and BBBq take
the form

AAAq = −2HHH2

BBBq = HHH2
1 +HHH2

2.
(8)

Note that the fact that the Hamiltonian is
normal implies, for the quantum system, that
there is an orthonormal basis that makes it
diagonal, while for the classical system, since
[AAAq,BBBq] = 0 it implies that there are normal
modes [13].

Given an initial condition ψψψ(0) the equa-
tion (1) has a unique solution [11], which also
satisfies the second order differential equation
(7) and requires another initial condition ψ̇ψψ(0)
that comes from −iHψHψHψ(0). On the other
hand, both the real and imaginary parts of ψψψ
satisfy the same equation (7). Therefore, nei-
ther of them can be neglected, as solving (7)
requires knowledge of the initial conditions for
Re(ψψψ) and Im(ψψψ).

Now let’s turn our attention to a classical
system. Considering a second-order linear sys-
tem of differential equations that closely re-
sembles to (7)

q̈̈q̈q(t) +AAAq̇̇q̇q(t) +BBBqqq(t) = 000 (9)

with (q1, · · ·, qk, · · ·, qn) = qqq ∈ Rn are the gen-
eralized coordinates, and AAA,BBB∈Mn×n(R), i.e.
the vector space of n×n real matrices. Accord-
ing to [7, 8], the equation (9) can be realized
using a classical electric network. Our focus
lies specifically on lumped element model cir-
cuits, where the voltage and current solely de-
pend on time.



IV. SYNTHESIS OF CLASSICAL
NETWORKS EQUIVALENTS TO

QUANTUM SYSTEMS

An electrical network can be defined as
a composite structure represented by an ori-
ented graph, wherein each arc exhibits two
time-dependent functions: current and volt-
age. These functions are interrelated through
Kirchhoff’s laws and the inherent connections
that arise from the graph’s depiction and the
interconnections among electrical elements,
such as resistors, inductors, capacitors, and
more [14].

When employing methods such as node
analysis, loop analysis, or pair analysis [14, 15]
to determine the dynamics of a network, sys-
tems of second-order linear differential equa-
tions or integro-differential equations are ob-
tained. However, comprehensive knowledge
of the entire electrical network, including its
constituent elements, their arrangement, and
interconnections, is necessary for the applica-
tion of these methods. As this specific infor-
mation is lacking, the solution must be for-
mulated for a generalized circuit, disregarding
its graph structure or the elements present in
each individual arc. Consequently, it becomes
impractical to apply any of the network anal-
ysis techniques until a specific network and its
corresponding arc elements are identified. Re-
solving this apparent circular problem calls for
not the analysis of a single circuit but the syn-
thesis of all circuits within a designated pre-
ferred family. Such prerequisites can be estab-
lished based on other assumptions, which will
be explored in the following sections.

The objective is to establish and character-
ize generalized coordinates within the electri-
cal network, ensuring the fulfillment of equa-
tions (9). As these equations entail n degrees

of freedom, n distinct local regions within the
network where voltages or currents can be
measured are defined. These regions, known
as ports, consist of pairs of terminals that fa-
cilitate energy exchange with the surroundings
and possess designated port voltages and port
currents. Consequently, it can be asserted
that the electrical network exhibits precisely
identified, independent n−ports.

The proposed structure corresponds to an
electrical network consisting of n dipoles de-
noted as {Nk}k∈Jn

, also known as one−port
networks, interconnected through an n−port
interaction network N [14, 17]. Each
one−port network introduces a port voltage
or port current, corresponding to a general-
ized coordinate qk from qqq in (9), as shown
in Figure 1. Since HHH is time-independent,
the matrices AAAq and BBBq inherit this prop-
erty. Consequently, the dynamics of the power
grid must remain invariant under time trans-
lations, implying the absence of internal gen-
erators. The initial conditions are specified
solely for each dipole, ensuring that the en-
ergy initially stored in the interaction network
N is zero. Thus, the theory of multi-port net-
works can be effectively employed to synthe-
size N, independent of its graph representa-
tion or constituent elements [14, 15].

Within this context, it is possible to de-
fine a transfer matrix function of N by tak-
ing the ratio of the Laplace transform of spe-
cific output signals to the Laplace transform
of certain input signals. Depending on the
chosen input and output signals, there ex-
ist four general representations: transmission,
impedance, admittance, or hybrid. However,
the hybrid representation for N must be ex-
cluded, as it would result in the mixing of in-
put and output signals (voltages and currents)
from different ports. This would compromise



the fundamental property where each network
{Nk}k∈Jn

inherently represents one and only
one coordinate of the quantum system in a
given basis. Consequently, the focus is on the
transmission, impedance, or admittance rep-
resentation of the n−port network N, which
is also classified as a passive network, meaning
that the energy provided by an external source
is non-negative. As previously mentioned, the
initial energy is supplied by the set of one-port
networks {Nk}k∈Jn

.
The dynamics of an electric network are

determined by the careful application of the
Kirchhoff rules, which account for the net-
work’s topology. This topology is illustrated
in Figure 1, providing a schematic representa-
tion of the network.

Figure 1. There are n dipole networks, denoted by
{N1, · · ·,Nk, · · ·,Nn} interconnected through an inter-
action network N.

Previously, the generalized coordinates in
the electrical network correspond to the port
voltages or port currents of each of the n

networks in the list {Nk}k∈Jn
. Hence, the

n−port network N serves as an interaction
medium, physically connecting the n dipole
networks. In the absence of interaction,
which corresponds to disconnecting the net-
work N, the non-interacting case is obtained.

In quantum mechanics, a diagonal Hamilto-
nianHHH=diag(λ1, · · ·, λn), excluding the trivial
case where HHH = 000, where each coordinate in
Equation (1) is given by ψk=αke

−iλkt, where
αk∈C. SinceHHH is hermitian, this solution rep-
resents pure harmonic oscillations, with λk be-
ing the unique natural frequency associated
with the coordinate ψk. In the classical cir-
cuit, this implies that each one-port network
must be non-dissipative. The reactance theo-
rem, initially developed by Foster and subse-
quently by Brune [18, 19], and generalized by
Cauer [20], provides a synthesis method for
lossless networks. It can be concluded that
the transfer function of such networks, in the
complex Laplace variable s, has a single pole
in the complex plane located on the imaginary
axis and its complex conjugate. This is due
to the transfer function being a positive-real
function [18–20]. Consequently, two types of
circuits can be identified for each dipole, as
depicted in Figure 2.

The chosen dynamical quantity is chosen
as the common variable to all these elements,
Lk and Ck, are voltages for the parallel case
and current for the series case, represented in
up and down part of Figure 2 respectively.

The pair of nodes (ak, bk) must be avail-
able to connect N, in the interaction case,
however are useful, at this time, to remem-
ber that Vk is the potential difference between
ak and bk (Ik is the current through ak and
bk) at up (down) case of Figure 2. In Figure
2, the voltage source Vk(0) (or current source
Ik(0)) not only represents the initial condi-
tion but also signifies that the initial energy
is stored in the reactive elements. From an
electromagnetic perspective, the initial poten-
tial difference across the capacitor Ck corre-
sponds to the stored electrical energy, given
by 1

2CkV
2

k (0). Similarly, the initial current in
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Figure 2. Alternatives topologies for each dipole sub-
network Nk. Using one of them, the signal: voltage Vk

(up) or current Ik (down) and its initial excitation, was
useful as a classical coordinate qk of (9). The above
network is the dual of the one below, and vice versa.

the inductor Lk represents the stored magnetic
energy, given by 1

2LkI
2
k(0). Therefore, both re-

active elements serve as the initial source and
contribute to the initial condition in each re-
spective case.

An alternative way to see this conclusion
directly and independently of the synthesis
method employed corresponds to take the de-
complexification of (1). The non−interacting
case corresponds to HHH is diagonal, and from
the hermiticity ofHHH this is also real. Then the
matrices AAAq and BBBq from (8) take the partic-
ular form AAAq = 000 and BBBq = diag(λ2

1, · · ·, λ2
n),

and the equation (7) is reduced to φ̈̈φ̈φl +BφBφBφl=000,
which corresponds to a classical system whose
behavior must respond to harmonic oscillator
without damping. In order to compare di-

rectly with the result from the network synthe-
sis method, let’s apply the Laplace transform,
L, of the above linear differential equation
and taken the k component of φφφl(t), denoted
by x(t), then X(s)=[s x(0) + ẋ(0)]/(s2 + λ2

k),
where X(s)=L(((x(t))))(s) has only two complex
conjugate poles on the imaginary axis, ±iλk.
The values of the inductance and capacitance
of each network Nk can be fixed in order to
satisfy λ2

k=(LkCk)−1.

In summary, interaction-free corresponds
to oscillation-free behavior without energy dis-
sipation. The procedure continues to the in-
jection of the signal Vk (or Ik) as port-voltage
(or port-current) of the interaction network.
In this way the subnetworks {Nk}k∈Jn

are
ready to be connected to each port of N.
Alternatives (dual) topologies for each dipole
subnetwork Nk for the interaction case. The
pair terminal (ak, bk) preparation of each
dipole requieres that the line between ak and
bk in the second (down) case of Figure 2 must
be opened. For each pair (ak, bk) must be con-
nected to the k−port of N, in order to repro-
duce the interaction.

To fix ideas, the port voltages of each net-
work in the list {Nk}k∈Jn

are chosen as gener-
alized coordinates, {Vk}k∈Jn

, as illustrated in
the upper Figure 2. The analysis provided in
[7] of the time evolution of electric circuits can
be generalized here and results in a system of
linear differential equations as (9).

From Kirchhoff’s first law at the kkk−node
of Figure 3 one has Ik(t)+ILk

(t)+Ick
(t)=0

where Lk and Ck are the mentioned tan-
dem of the network Nk. Given that
the current-voltage relationship for the
inductor Lk is Vk(t)=LkİLk

(t), then
ILk

(t)=ILk
(ϵ)+ 1

Lk

∫ t
ϵ Vk(u) du, for ϵ<0 and |ϵ|

small, with the causality condition for the
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Figure 3. Under the hypothesis that the n−port net-
work N has an admittance representation with ad-
mittance matrix YYY (s), for each k∈Jn: Lk∥Ck tandem
dipole circuit of the Figure 1 is connected to its k−port.

inductor current ILk
(t)=0, ∀t < 0, thus

Ik(t) + Ckv̇k(t)+ 1
Lk

∫ t

ϵ
Vk(u) du = 0. (10)

Performing a Laplace transform on (10) and
using the causality condition for k−port volt-
age Vk, thus

Ik(s)+Cks Vk(s)−CkVk(0)+ 1
Lks

Vk(s) = 0.
(11)

Note that the causality condition on Vk is
expressed here in L[[[

∫ t
ϵ Vk(u)du ]]]=s−1 Vk(s),

because Vk(t)=0, ∀t<0. It will be use-
ful to define VVV=(V1, · · · , Vk, · · ·Vn) and
III=(I1, · · · , Ik, · · · In) as the voltage and cur-
rent port vectors. Thus, the equation (11) can
be expressed in vector form as

sVVV(s)−VVV (0)+s−1ωωω2
0VVV(s)+CCC−1YYY (s)VVV(s) = 000

(12)
where VVV(s)=L[[[VVV (t)]]] and CCC and LLL are di-
agonal matrices which contain the capacitors
and inductors of the one−port networks of
the list {Nk}k=1,···,n, CCC=diag(C1, · · ·, Cn) and
LLL=diag(L1, · · ·, Ln). In this way, ωωω2

0=(LCLCLC)−1

contains the proper frequencies of each Lk∥Ck

port tandem of the Figure 2. Additionally, the

transfer relation coming from the interaction
network N is utilized: III(s)=YYY (s)VVV(s). Ap-
plying the inverse Laplace transform (L−1) on
(12) to obtain the equation in the time domain

V̇̇V̇V (t)+ωωω2
0

∫ t

0
VVV (u)du+CCC−1L−1[YYY (s)VVV(s)](t)=000

and differentiate with respect to t to obtain a
second-order differential equation

V̈̈V̈V (t)+ωωω2
0VVV (t)+CCC−1dt

{
L−1[YYY (s)VVV(s)](t)

}
=000.

(13)
where dt is a compact notation of the usual
time derivative. The matrix elements of YYY (s)
are rational functions: quotients of polynomi-
als in s. A necessary and sufficient condition
for that the equation (13) has the form of (9)
is

YYY (s) = ααα+ 1
s
βββ (14)

where the constant matrix ααα and βββ can be syn-
thesized using the general method exposed in
[16, 17]. Finally, the matrices (AAA,BBB) of (9)
are written in terms of admittance matrices
(ααα,βββ) of the interaction network Nand (LLL,CCC)
from k−tandem Lk∥Ck circuit, which consti-
tutes the subnetwork Nk showed in Figure 3,
as

AAA = CCC−1ααα,

BBB = CCC−1βββ +ωωω2
0.

(15)

Using the synthesis methods [14–17] on the
general topology proposed in Figure 1, it is
possible to obtain an interaction network N

whose admittance matrices define two matri-
ces from (15) corresponds to the two matrices
from (8)

(AAA,BBB) ≍ (AAAq,BBBq). (16)

In other words these classical matrices can be
mapped to the quantum hamiltonian. In other



words, HHH is codified in terms of AAA and BBB, in
particular in ααα and βββ of the synthesis of the in-
teraction network N. In general, the proposed
configuration in the Figure 1 each port voltage
Vk works as the real, or imaginary, part of the
k−component of the wave function ψψψ.

A similar procedure can be repeated us-
ing the impedance representation of the net-
work N, simply by interchanging the follow-
ing quantities: voltages by currents, induc-
tances by capacitances, conductances by re-
sistances in order to obtain identical equa-
tions to (9) so that now the generalized co-
ordinates are the port−currents III. Note that
this alternative not only gives us a plan B in
the implementation but also both implementa-
tions could be done simultaneously, so that the
port−voltages of one and the port−currents of
the other are represents exactly, i.e. is associ-
ated through ≍, the real and imaginary part
of the wave function Re(ψψψ)≍VVV and Im(ψψψ)≍III
[8].

An alternative and more formal approach
is provided by the analytic representation of a
given signal, e.g. a potential. This representa-
tion extends the concept of phasor associated
to signals of a fixed frequency, in the sense
that it allows representing signals whose am-
plitude and phase are time variable functions
[24]. For a given real signal x(t), its analytic
signal is another time variable function xα(t),
defined by

xα := x+ iy, (17)

where y := H[x] is the Hilbert transform of x.
Then x = Re(xα) and y = Im(xα). The ref-
erence to x in xα must be maintained because
the analytic signal is a complex representation
of a real signal x. Conversely, for an analytic
function f(z) in the upper half-plane of C, and
a real function x such that x(t)=Re(((f(t+0·i)))),

then Im(((f(t+0 · i))))=H[x(t)] up to an additive
constant, provided this Hilbert transform ex-
ists. For more details, Titchmarsh [21] con-
ducted a rigorous mathematical analysis of
Hilbert transforms in relation to analytic func-
tions, Guillemin [22] later derived equivalent
formulas for Hilbert transforms, followed by
Oswald [23] who established a connection be-
tween analytic signals and Hilbert transforms.
A modern treatment of such ideas can be
found in [24, 25].

Given a classical network such that the po-
tential real signal VVV is associated with the
real part of the wave function ψψψ, its imagi-
nary part can be obtained by calculating the
Hilbert transform of VVV , thus

Re(ψψψ) ≍ VVV ,

Im(ψψψ) ≍ H[VVV ].
(18)

Each component ψk, which represents the
probability amplitudes, is associated with a
classical quantity, e.g. Vk, in this way

ψψψ ≍ VVV α=VVV+iH[VVV ]. (19)

There is a connection between the concept of
envelopes of real waveforms with respect to it
Hilbert transform [33], that allow us to express
the envelope of x, namely env[x], as

env[x] =
√
x2 +

(
H[x]

)2
. (20)

Regarding the described quantum system on
numerable Hilbert space, the modulus of each
component ψk squared represents the proba-
bility, |⟨βk|ψ⟩|2, of the system’s state |ψ⟩ being
|βk⟩, according to the Born rule. In this way,
this probability, pk, corresponds to the enve-
lope of the classical signal squared

pk ≍
(
env[Vk]

)2
, (21)

note that pk=|⟨βk|ψ⟩|2 is a probability mass
function for the state level variable k. A con-
crete construction of such electrical network



with their corresponding experimental mea-
surements can be found in [8].

V. ELECTRICAL PAULI
REPRESENTATION

Pauli matrices [26] are one of the most sig-
nificant and widely recognized sets of matri-
ces in the realm of quantum physics. They
are particularly crucial in both physics and
chemistry, being used for quantum simula-
tions [29, 30] and to describe Hamiltonians of
many-body spin glasses [27, 28]. From the
mathematical point of view, Pauli matrices
{σσσk}k=1,2,3, together with the identity matrix
σσσ0, form a basis for the vector space M2×2(C),
which is fundamental in quantum theory, as
they are used to represent the observables of a
two-level quantum system. However, for sys-
tems of higher dimension, it is possible to con-
struct the appropriate Hamiltonian using the
tensor product of such matrices [31].

Let’s see now how to find the explicit clas-
sical circuit corresponding to the Hamiltonian
HHH=

∑3
k=0 ξk σσσk, note thatHHH = HHH† thus ξk∈R.

As a gift, a classical circuit corresponding to
each Pauli operator will be obtained by con-
sidering (ξ1, ξ2, ξ3) equal to any element of
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Explicitly

HHH =
(
ξ0 + ξ3 ξ1 − i ξ2

ξ1 + i ξ2 ξ0 − ξ3

)
(22)

From (8)

AAAq =
(

0 2ξ2

−2ξ2 0

)
,

BBBq =
(

(ξ0+ξ3)2+ξ2
1−ξ2

2 2ξ0ξ1

2ξ0ξ1 (ξ0−ξ3)2 + ξ2
1−ξ2

2

)
.

In section IV, it is stated that in the non-
interacting case of a quantum system, when
the Hamiltonian HHH is diagonal, it corresponds

to disconnect the interaction network N, i.e.
YYY = 000. From (15) obtain AAA=000 and BBB=ωωω2

0.
Given thatAAA≍AAAq then ξ2 = 0 and fromBBB≍BBBq

then ξ1 = 0. Note that ξ0 ̸= 0 in order to
include the possibility of different natural fre-
quencies. In this way the first association is
(L1C1)−1≍(ξ0 +ξ3)2 and (L2C2)−1≍(ξ0 −ξ3)2.

Now, connecting the interaction network
YYY (s) = ααα+ (1/s)βββ, a two-gate network is syn-
thesized to a gyrator [32] connected in parallel
with a network of inductors with a

∏∏∏
structure

[16, 17]. The matrices of YYY are given by

ααα=
(

0 g

−g 0

)
, βββ=

(
L−1

a + L−1
b −L−1

c

−L−1
c L−1

a + L−1
b

)
.

where g is the conductance parameter of the
gyrator.

Figure 4 shows the complete circuit associ-
ated with the two-level quantum system whose
Hamiltonian is given by (22).

C1C1C1L1L1L1

a1a1a1

b1b1b1

C2C2C2 L2L2L2

a2a2a2

b2b2b2

gggLaLaLa LbLbLb

LcLcLc

Figure 4. The admittance representation of the com-
plete circuit whose port−voltages (V1, V2) reproduce
the time evolution (1) of the quantum system given
by the hamiltonian (22). In order to simplify the fig-
ure, the initial condition V1(0) and V2(0) has been sup-
pressed.

The electric Pauli representation comes
from (16), the first observation is that
C1=C2, hereinafter denoted by C. From



(AAA,BBB)≍(AAAq,BBBq) obtain

(CL1)−1 ≍ (ξ0 + ξ3)2

(CL2)−1 ≍ (ξ0 − ξ3)2

(CLa)−1 + (CLb)−1 ≍ ξ2
1 − ξ2

2

−(CLc)−1 ≍ 2ξ0ξ1

C−1g ≍ 2ξ2

(23)

Under an equivalent circuital point of view,
the pair of inductors (L1, La) and (L2, Lb) are
arranged in parallel. In order to build the
equivalent circuit, we can unify the pairs of in-
ductors arranged in parallel: L∗

1=L1∥La and
L∗

2=L2∥Lb. On the quantum side, the num-
ber of independent parameters are exactly four
(ξ0, ξ1, ξ2, ξ3), finally on the classic side, the
number of independent parameters are also
four (L∗

1, L
∗
2, Lc, g), because all the parameters

can be rescaled as they are all affected by the
same C.

VI. CONCLUSION AND FINAL
OBSERVATIONS

The aim of present work it was to prove
that there is a way to simulate the time evo-
lution of a given quantum system on finite-
dimension Hilbert space, using electrical net-
works.

Regarding the simulation of a quantum sys-
tem Q′, the objective is to find another system
that closely imitates the behavior of Q as ac-
curately as possible. In other words, a cast-
ing call of quantum systems or actors must
be conducted, which can be quite limited due
to the challenging task of finding a suitable
candidate to simulate Q′. It is worth noting
that the mapping ΩΩΩωωω(HHH):=ωωωHHHωωω−1 + i ω̇ωω.ωωω−1

is a generalization of a similarity transforma-
tion [3]. By leveraging the fact that all these
quantum systems are equivalent through the

mapping ΩΩΩωωω, which connects a given Hamil-
tonian HHH to any other Hamiltonian HHH ′ [2], a
well-defined path emerges for the implementa-
tion of quantum system simulation using clas-
sical circuits.

Given a quantum system Q over a Hilbert
space of finite dimension n, there is a gen-
eral topology, as shown in Figure 1, of
n−subnetworks {Nk}k=1,···,n connected to an
interaction network Nof n−ports. Such a net-
work N can be adequately synthesized in such
a way that the voltages (or currents) of each of
its ports evolves in time in the same way as the
real (imaginary) part of the original quantum
system. In other words, the time evolution
of such a quantum system can be analogically
simulated from a classical tuned circuit. To
simulate a two-state quantum system, e.g. a
qubit, a two-port network will be needed. To
simulate an n−state quantum system, a net-
work of n−ports will be needed.

Electric circuits under alternating current
have recently demonstrated the ability to
simulate various topological phenomena in
physics. This type of classical constructions
allows us to deal with infinite degrees of free-
dom encoded along a transmission line. Fol-
lowing these ideas, it remains for future work
to formalize them in terms of [2] to identify
precisely how to map the dynamics of spa-
tially distributed electrical networks to quan-
tum systems of infinite degrees of freedom. In
order to continue with this classical approach,
one could choose to keep the electrical branch
working with transmission lines [34, 35] or
switch to an optical approach [36].

Recall that a quantum computer, e.g.
Google or IBM, that possess N qubits can en-
code 2N states in order to process information,
provided that: the number of logical qubits is
N and the decoherence times are greater than



the execution time of the algorithm. While
there are many challenges to implementing the
classical ideas discussed in this article, one of
the advantages of these is that the above con-
ditions are not required.

Regarding Born’s rule, it has been possible
to reinterpret it based on the envelope of the
port-potentials of each subnetwork as (21).

A final comment on this matter could be
the advantage of employing these classical sys-
tems is their present controllability, which al-
lows for precise manipulation of their tempo-
ral evolution. By incorporating classical ac-
tors into the catalog of quantum system simu-
lators, traditionally not involved in such sim-
ulations, the scope and potential of simulat-
ing the quantum system Q is broadened. This
work significantly contributes to the advance-
ment of quantum simulations.
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A.; Equivalence between classical and quan-

tum dynamics. Neutral kaons and electric cir-
cuits, Ann. Phys. 326, 10, 2717−2736 (2011).

[8] Caruso M., Fanchiotti H., Garćıa Canal C.
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