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Abstract

This study presents the implementation of the Generalized Additive Model (GAM) for
predicting nuclear binding energies. GAM, a non-parametric regression model, effec-
tively captures complex, non-linear relationships between input variables and the out-
put, providing an interpretable framework for understanding the contribution of each
nuclear property to the binding energy. The model’s performance is evaluated using
data from the Atomic Mass Evaluation (AME) 2020, yielding promising results with a
Root Mean Square Error (RMSE) of 0.3 MeV. This study demonstrates the potential of
machine learning methods, such as GAM, in nuclear physics, particularly for complex,
many-body problems where traditional methods face computational challenges.
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1 Introduction18

Nuclear binding energy is a fundamental property that plays a crucial role in understanding19

nuclear stability, decay processes, and astrophysical phenomena. It reflects the energy required20

to disassemble a nucleus into its constituent protons and neutrons, providing insights into21

the forces that hold the nucleus together. Accurate prediction of nuclear binding energies is,22

therefore, essential for both theoretical research and practical applications in nuclear physics.23

Traditionally, nuclear binding energies have been predicted using models such as the Liq-24

uid Drop Model (LDM). Although this model has been successful in many instances, it faces25

significant limitations, particularly when applied to nuclei that are far from the line of stabil-26

ity. The LDM, which treats the nucleus as a macroscopic liquid drop, approximates binding27

energy based on macroscopic properties such as volume, surface area, and Coulomb forces [1].28

However, it struggles to accurately capture the finer details of nuclear structure, including the29

effects of magic numbers and other quantum phenomena. As a result, the Root Mean Square30

Error (RMSE) for LDM predictions typically reaches around 2.463 MeV, reflecting the model’s31

limited accuracy [2].32

Given these challenges, there has been growing interest in exploring alternative approaches33

that can offer greater accuracy and deeper insights into the underlying physics. Machine learn-34

ing models, particularly those that can model non-linear relationships, such as the Generalized35

Additive Model (GAM), have emerged as promising tools in this regard. GAMs provide a flexi-36

ble yet interpretable framework for predicting nuclear binding energies by capturing complex37

interactions between nuclear properties while allowing for the analysis of individual contribu-38

tions of each feature [3].39

In this study, we apply the Generalized Additive Model to predict nuclear binding energies,40

focusing on a set of nuclear features including proton number (Z), neutron number (N), and41

other key nuclear properties. Our goal is to not only achieve high predictive accuracy but also42

to provide interpretable insights into the role of each feature in determining the binding energy,43

thereby bridging the gap between traditional theoretical models and modern computational44

techniques. We compare the performance of the GAM against the traditional LDM to evaluate45

its effectiveness and to explore its potential advantages in nuclear physics research.46

2 Methodology47

2.1 Generalized Additive Model (GAM)48

The Generalized Additive Model (GAM) is a flexible regression model that allows the response49

variable to be modeled as a sum of smooth functions of the predictor variables (features) [4].50

Mathematically, the GAM can be expressed as:51

g(E(Y )) = β0 + f1(Z) + f2(N) + f3(A) + . . .+ fn(xn) + ε (1)

where:52

• g(E(Y )) is the link function that relates the expected value of the response variable Y53

(nuclear binding energy) to the linear predictor.54

• fi(x i) are smooth functions that model the effect of each predictor variable (feature) x i55

on the response variable.56

• β0 is the intercept term.57

• ε is the error term.58
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In this study, the identity link function was used, which means that g(E(Y )) = E(Y ),59

simplifying the model to:60

E(Y ) = β0 + f1(Z) + f2(N) + f3(A) + . . .+ fn(xn) + ε (2)

The smooth functions fi(x i) were estimated using penalized splines, which balance the61

complexity of the model with the need to avoid overfitting. The model was implemented using62

the pyGAM library in Python [5], and the training process involved optimizing the smoothing63

parameters to balance bias and variance.64

2.2 Data Source65

The dataset used in this study is sourced from the Atomic Mass Evaluation (AME) 2020, which66

provides detailed information on nuclear properties [6]. The AME 2020 dataset includes var-67

ious nuclear characteristics, such as proton number (Z), neutron number (N), mass number68

(A), and binding energy.69

In this study, only data points where both neutron number (N) and proton number (Z)70

are greater than or equal to 8 were used. Data with N < 8 or Z < 8 were excluded from71

the analysis. This exclusion was made to ensure the model focuses on nuclei that are more72

relevant to the study of nuclear binding energy, as nuclei with very low N or Z do not provide73

significant insights for the predictive model.74

2.3 Feature Engineering75

The predictor variables (features) selected for this model include proton number (Z), neu-76

tron number (N), mass number (A), nuclear radius, surface area, |N − Z |, MagicZ, MagicN,77

Z_valence, N_valence, and pairing (Pair). These features were chosen based on their rele-78

vance to nuclear binding energy.79

Proton number (Z) and neutron number (N) were directly obtained from the AME 202080

dataset as fundamental properties of nuclei. These are used to calculate the mass number (A),81

which is simply the sum of Z and N .82

Nuclear radius and surface area were computed using empirical formulas related to the83

mass number A. Specifically, the nuclear radius was approximated using A1/3, and the surface84

area was derived using A2/3.85

The feature |N − Z | represents the absolute difference between the number of neutrons86

and protons in the nucleus, calculated directly from Z and N .87

MagicZ and MagicN indicate the proximity of Z and N to the nearest magic numbers,88

which correspond to completed nuclear shells associated with greater nuclear stability. These89

magic numbers include 2, 8, 20, 28, 50, 82, and 126. The values for MagicZ and MagicN were90

calculated by finding the closest magic number to Z and N and recording the difference.91

Z_valence and N_valence denote the number of protons and neutrons in the outermost92

shell, determined by comparing the proton and neutron numbers with the known magic num-93

bers. For example, if Z lies between 28 and 50, the number of protons in the outermost shell94

is given by Z − 28.95

Finally, the pairing (Pair) feature was determined using a custom scale that assigns a value96

from 0 to 9 based on the parity of Z and N . The specific values are detailed in Table 1.97

2.4 Model Implementation98

The Generalized Additive Model (GAM) was implemented using the pyGAM library in Python.99

The model was trained using the predictor variables (features) described above, with the goal100
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Table 1: Pairing feature values based on the parity of Z and N with respect to the
relationship between Z and N .

odd-Z odd-N odd-Z even-N even-Z odd-N even-Z even-N
Z > N 0 3 5 7
Z = N 1 - - 8
Z < N 2 4 6 9

of predicting nuclear binding energy. Penalized splines were used to estimate the smooth101

functions fi(x i) for each feature, balancing model complexity and overfitting.102

To ensure the robustness of the model, 5-fold cross-validation was employed during the103

training process. Specifically, the dataset was split into 5 subsets. The model was trained104

on 4 of these subsets and validated on the remaining subset. This process was repeated 5105

times, with each subset serving as the validation set once. The average performance across all106

folds was used to assess the model’s generalization capability and to fine-tune the smoothing107

parameters.108

Finally, the model’s performance was evaluated on a separate test set using the Root Mean109

Square Error (RMSE) to assess predictive accuracy. The interpretability of the model was also110

leveraged to analyze the contribution of each feature to the binding energy.111

3 Results112

The Generalized Additive Model (GAM) was used to predict nuclear binding energies using113

the selected nuclear features. The model achieved a Root Mean Square Error (RMSE) of 0.3114

MeV, representing a significant improvement over the Liquid Drop Model (LDM), which had115

an RMSE of 2.463 MeV.116

Figure 1 provides a comparison between the GAM and LDM. Panel (a) shows the distri-117

bution of binding energy differences between the LDM predictions and experimental results118

in the neutron (N) versus proton (Z) plane, highlighting substantial deviations. In contrast,119

panel (b) demonstrates that the GAM predictions are much closer to the experimental data120

across a wide range of N and Z , indicating better overall accuracy.121

Figures 2 and 3 illustrate the neutron separation energies and two-neutron separation en-122

ergies for isotopes of calcium (Ca), bromine (Br), tin (Sn), and lead (Pb). The predicted val-123

ues align closely with the experimental data, demonstrating the model’s capability to capture124

trends and subtle variations across different isotopic chains.125

4 Discussion126

The significant reduction in RMSE from 2.463 MeV with the LDM to 0.3 MeV with the GAM127

highlights the latter’s ability to capture complex, non-linear interactions between nuclear prop-128

erties. The comparison in Figure 1 indicates that the GAM provides a more accurate and129

reliable model, particularly for nuclei with magic numbers, where traditional models often130

struggle.131

The neutron separation energies in Figure 2 showcase the GAM’s effectiveness in predicting132

sharp discontinuities at magic numbers, which are indicative of closed nuclear shells. This133

ability to model shell effects accurately is further validated by the consistent predictions of134

two-neutron separation energies across various isotopes in Figure 3. The GAM’s capacity to135

capture these subtle structural effects makes it a valuable tool for studying nuclear stability136
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and binding energy.137

4.1 GAM Interpretations138

The interpretation of selected nuclear features using the GAM model, as shown in Figure 4,139

provides valuable insights into the contributions of key variables to nuclear binding energy. For140

proton number (Z), the GAM model exhibits a quadratic pattern (Figure 4a), where binding141

energy increases with the number of protons until reaching a peak, then decreases. This pat-142

tern is due to the Coulomb energy within the nucleus, where an increasing number of protons143

enhances the repulsive force among them, thereby reducing the binding energy.144

For neutron number (N), the GAM model (Figure 4b) indicates that binding energy contin-145

uously increases as more neutrons are added. Neutrons act as a balancing force to counteract146

the repulsive interaction between protons, thus enhancing the overall binding energy.147

The positions of proton number (Z) and neutron number (N) at magic numbers (magicZ148

and magicN), and their valence (Z_valence and N_valence), show distinct patterns in the GAM149

model (Figures 4d-4g). Nuclei with atomic numbers in the third shell (50 ≤ Z ≤ 81) exhibit150

high binding energies, while those in the fourth shell (82 ≤ Z ≤ 125) display lower binding151

energies, as observed in elements like Sn and Xe [?]. This reduction is attributed to a lack of152

neutron pairing with protons, leading to increased proton-proton repulsion and, consequently,153

lower binding energy. For magicN, high binding energy occurs when N ≥ 126, as additional154

neutrons provide an attractive force that balances proton repulsion, increasing stability.155

For nuclear radius, surface area, and mass number (A), the GAM model shows a similar156

trend (Figure 4). Binding energy decreases to a minimum as the nuclear radius increases, then157

rises again. This pattern is mirrored in surface area and mass number, with minima occurring158

at radius ≈ 4, surface area ≈ 18, and mass number A ≈ 70. The correlation among these159

features can be expressed as:160

70≈ 18× 4≈ 43

This is due to the derivation of radius and surface area from mass number. Although these161

features are interrelated, they were included in the analysis to assess their individual effects,162

which the GAM model shows to be similar for all three.163

The feature |N − Z |, representing the neutron-proton difference, suggests that nuclei with164

balanced neutron and proton numbers are more stable.165

The pairing effect interpretation reveals that nuclei with odd-odd proton and neutron num-166

bers have the weakest binding energy, while even-even configurations show the strongest bind-167

ing energy. Odd-even configurations exhibit medium binding energy. This pattern highlights168

the stabilizing effect of nucleon pairing, where complete pairing in even-even configurations169

reduces the repulsive forces within the nucleus.170

Further analysis and visualization of these features are necessary to gain a comprehensive171

understanding of their roles in determining nuclear binding energy. While the current study172

provides insightful interpretations based on the GAM model, it is not exhaustive. These find-173

ings contribute to the understanding of nuclear binding energy but indicate the need for more174

detailed research to fully explore the impact of these and other nuclear properties.175

5 Conclusion176

This study demonstrates the effectiveness of the Generalized Additive Model (GAM) in predict-177

ing nuclear binding energy, offering a significant improvement over traditional models such178

as the Liquid Drop Model (LDM). The GAM achieved a Root Mean Square Error (RMSE) of179
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Figure 1: Comparison of binding energy difference distributions between experimen-
tal results and two models in the neutron (N) versus proton (Z) plane. The left panel
shows the comparison with the Liquid Drop Model (LDM), and the right panel shows
the comparison with the Generalized Additive Model (GAM).

Figure 2: Neutron separation energy chains for the isotopes of Ca, Br, Sn, and Pb.
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Figure 3: Two-neutron separation energy chains for the isotopes of Ca, Br, Sn, and
Pb.

0.3 MeV, compared to 2.463 MeV for the LDM, highlighting its capability to capture complex,180

non-linear relationships between nuclear properties.181

The model successfully identified critical patterns related to proton and neutron numbers,182

particularly at magic numbers, and accurately represented nuclear shell effects. Interpreta-183

tions of nuclear features such as radius, surface area, and mass number revealed a coherent184

relationship, reinforcing the correlation between these variables and binding energy. Addi-185

tionally, the analysis of pairing effects indicated that even-even configurations are the most186

stable, while odd-odd configurations exhibit the weakest binding energy.187

These findings underscore the potential of machine learning models like GAM to enhance188

our understanding of nuclear binding energy and stability. However, further research and189

more comprehensive modeling are needed to explore the contributions of additional nuclear190

features and to refine the interpretations provided by this study.191
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A Supplemental Material195

A.1 Data and Code196

The dataset for the experimental binding energies used in this study is sourced from the197

Atomic Mass Evaluation (AME) 2020 and is referred to as binding_energy_14.csv. The198

dataset for the Liquid Drop Model is referred to as LDM.csv. The code used for analy-199

sis and visualization is implemented in Python. The data and code can be accessed at the200

following link: https://github.com/kristiyanlaoli/Predicting-Nuclear-Binding-Energy-Using-201

Generalized-Additive-Model.202

To replicate the results, users should ensure that all required libraries, such as pyGAM,203
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(a) GAM Interpretation of Z (b) GAM Interpretation of N (c) GAM Interpretation of A

(d) GAM Interpretation of
magicZ

(e) GAM Interpretation of
magicN

(f) GAM Interpretation of
Z_valence

(g) GAM Interpretation of
N_valence

(h) GAM Interpretation of pair (i) GAM Interpretation of ra-
dius

(j) GAM Interpretation of sur-
face

(k) GAM Interpretation of
|N − Z |

Figure 4: Interpretation of various nuclear features using the Generalized Additive
Model (GAM).
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tensorflow, numpy, pandas, and matplotlib, are installed. Instructions for running the204

code and loading the datasets are provided within the comments in the code.205
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