SciPost Submission Page
On the coupling of Galilean-invariant field theories to curved spacetime
by Kristan Jensen
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Kristan Jensen |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/1408.6855v3 (pdf) |
Date accepted: | 2018-07-09 |
Date submitted: | 2018-06-18 02:00 |
Submitted by: | Jensen, Kristan |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We consider the problem of coupling Galilean-invariant quantum field theories to a fixed spacetime. We propose that to do so, one couples to Newton-Cartan geometry and in addition imposes a one-form shift symmetry. This additional symmetry imposes invariance under Galilean boosts, and its Ward identity equates particle number and momentum currents. We show that Newton-Cartan geometry subject to the shift symmetry arises in null reductions of Lorentzian manifolds, and so our proposal is realized for theories which are holographically dual to quantum gravity on Schr\"odinger spacetimes. We use this null reduction to efficiently form tensorial invariants under the boost and particle number symmetries. We also explore the coupling of Schr\"odinger-invariant field theories to spacetime, which we argue necessitates the Newton-Cartan analogue of Weyl invariance.
List of changes
The changes were all minor, following the recommendations of the Referees. The notable ones were:
1. To include a few words about the Bargmann group to the introduction.
2. I expanded a bit on Footnote 2.
Published as SciPost Phys. 5, 011 (2018)