SciPost logo

The complete scientific publication portal
Managed by professional scientists
For open, global and perpetual access to science

SciPost Submission Page

Integrable Matrix Product States from boundary integrability

by B. Pozsgay, L. Piroli, E. Vernier

Submission summary

As Contributors: Balázs Pozsgay
Arxiv Link: https://arxiv.org/abs/1812.11094v2
Date submitted: 2019-01-31
Submitted by: Pozsgay, Balázs
Submitted to: SciPost Physics
Domain(s): Theoretical
Subject area: Mathematical Physics

Abstract

We consider integrable Matrix Product States (MPS) in integrable spin chains and show that they correspond to "operator valued" solutions of the so-called twisted Boundary Yang-Baxter (or reflection) equation. We argue that the integrability condition is equivalent to a new linear intertwiner relation, which we call the "square root relation", because it involves half of the steps of the reflection equation. It is then shown that the square root relation leads to the full Boundary Yang-Baxter equations. We provide explicit solutions in a number of cases characterized by special symmetries. These correspond to the "symmetric pairs" $(SU(N),SO(N))$ and $(SO(N),SO(D)\otimes SO(N-D))$, where in each pair the first and second elements are the symmetry groups of the spin chain and the integrable state, respectively. These solutions can be considered as explicit representations of the corresponding twisted Yangians, that are new in a number of cases. Examples include certain concrete MPS relevant for the computation of one-point functions in defect AdS/CFT.

Current status:
Editor-in-charge assigned

Submission & Refereeing History

Submission 1812.11094v2 (31 January 2019)

Login to report or comment