SciPost Submission Page
Geometry of variational methods: dynamics of closed quantum systems
by Lucas Hackl, Tommaso Guaita, Tao Shi, Jutho Haegeman, Eugene Demler, J. Ignacio Cirac
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Lucas Hackl · Jutho Haegeman |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2004.01015v3 (pdf) |
Date accepted: | 2020-09-29 |
Date submitted: | 2020-09-22 10:02 |
Submitted by: | Hackl, Lucas |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: K\"ahler and non-K\"ahler. Traditional variational methods typically require the variational family to be a K\"ahler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-K\"ahler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states.
List of changes
Detailed list of changes (including a pdf with changes marked in red) can be found in our reply to the referee.
Published as SciPost Phys. 9, 048 (2020)