SciPost logo

SciPost Submission Page

The spectral form factor in the `t Hooft limit -- Intermediacy versus universality

by W. L. Vleeshouwers, V. Gritsev

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Ward Vleeshouwers
Submission information
Preprint Link: https://arxiv.org/abs/2201.07841v3  (pdf)
Date accepted: 2022-09-22
Date submitted: 2022-09-09 15:52
Submitted by: Vleeshouwers, Ward
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
  • Mathematical Physics
Approach: Theoretical

Abstract

The Spectral Form Factor (SFF) is a convenient tool for the characterization of eigenvalue statistics of systems with discrete spectra, and thus serves as a proxy for quantum chaoticity. This work presents an analytical calculation of the SFF of the Chern-Simons Matrix Model (CSMM), which was first introduced to describe the intermediate level statistics of disordered electrons at the mobility edge. The CSMM is characterized by a parameter $ 0 \leq q\leq 1$, where the Circular Unitary Ensemble (CUE) is recovered for $q\to 0$. The CSMM was later found as a matrix model description of $U(N)$ Chern-Simons theory on $S^3$, which is dual to a topological string theory characterized by string coupling $g_s=-\log q$. The spectral form factor is proportional to a colored HOMFLY invariant of a $(2n,2)$-torus link with its two components carrying the fundamental and antifundamental representations, respectively. We check that taking $N \to \infty$ whilst keeping $q<1$ reduces the connected SFF to an exact linear ramp of unit slope, confirming the main result from arXiv:2012.11703 for the specific case of the CSMM. We then consider the `t Hooft limit, where $N \to \infty$ and $q \to 1^-$ such that $y = q^N $ remains finite. As we take $q\to 1^-$, this constitutes the opposite extreme of the CUE limit. In the `t Hooft limit, the connected SFF turns into a remarkable sequence of polynomials which, as far as the authors are aware, have not appeared in the literature thus far. A gap opens in the spectrum and, after unfolding by a constant rescaling, the connected SFF approximates a linear ramp of unit slope for all $y$ except $y \approx 1$, where the connected SFF goes to zero. We thus find that, although the CSMM was introduced to describe intermediate statistics and the `t Hooft limit is the opposite limit of the CUE, we still recover Wigner-Dyson universality for all $y$ except $y\approx 1$.

Author comments upon resubmission

We have added the numerically unfolded spectral form factor (SFF) for N=10 and N=20, as per the referee's suggestion. The 'poor man's' unfolded SFF in the 't Hooft limit is given in figure 7, which we have clearly indicated in the text. We intend to defer a more extensive numerical analysis to a future publication.

List of changes

1. Added a treatment (including plots) of numerically unfolded SFF's for N=10 and N=20.
2. Corrected typos

Published as SciPost Phys. Core 5, 051 (2022)

Login to report or comment